Extraction of soluble compounds from cocoa shell with supercritical CO2. A methilxantines and fat case

Authors

  • Fanny Adabel González-Alejo Universidad Juárez Autónoma de Tabasco, División Académica de Ciencias Agropecuarias, carretera Villahermosa-Teapa km 25 Ra, La Huasteca 2da sección, Villahermosa, Tabasco, México, C. P. 86288.
  • Juan Barajas-Fernández Universidad Juárez Autónoma de Tabasco, División Académica de Ingeniería y Arquitectura. http://orcid.org/0000-0001-8010-2629
  • Pedro García-Alamilla Universidad Juárez Autónoma de Tabasco, División Académica de Ciencias Agropecuarias, carretera Villahermosa-Teapa km 25 Ra, La Huasteca 2da sección, Villahermosa, Tabasco, México, C. P. 86288. http://orcid.org/0000-0002-5325-1327

DOI:

https://doi.org/10.29059/cienciauat.v13i2.1073

Keywords:

theobromine, caffeine, fat, supercritical extraction, cocoa shell

Abstract

Supercritical extraction is an effective technique for separating various compounds from natural matrices due to the properties from solvents, such as CO2, in supercritical state. In the present work, the supercritical extraction of theobromine, caffeine and fat from cocoa shell was carried out with supercritical CO2. A 22 design with 5 central points was proposed, with static operation conditions, having pressure (2 000 psi to 6 000 psi) and extraction temperature (318 K to 333 K) as study factors. The residues were analyzed in the extraction chamber to evaluate the removal and residual percentages of fat, caffeine and theobromine, respectively. The results showed a yield between 1.72 % to 9.57 %, with a removal rate for fat and caffeine of 61.31 % to 94.54 % and 38.52 % to 78.38 %, respectively. The theobromine was retained in the shell powder with a residual ratio greater than 90 %. The effects of temperature and pressure for fat were predicted through a first order polynomial with interaction effects, but not for caffeine or theobromine. The extraction method was efficient to remove fat and caffeine, leaving a residue powder in the extraction chamber considered as high in functional compounds.

Author Biographies

Fanny Adabel González-Alejo, Universidad Juárez Autónoma de Tabasco, División Académica de Ciencias Agropecuarias, carretera Villahermosa-Teapa km 25 Ra, La Huasteca 2da sección, Villahermosa, Tabasco, México, C. P. 86288.

Estudiante de la Maestría en Ciencias Agroalimentarias

CVU: 706480

Juan Barajas-Fernández, Universidad Juárez Autónoma de Tabasco, División Académica de Ingeniería y Arquitectura.

Profesor-Investigador
Programa educativo de Ingeniería Química

CVU: 33002

Pedro García-Alamilla, Universidad Juárez Autónoma de Tabasco, División Académica de Ciencias Agropecuarias, carretera Villahermosa-Teapa km 25 Ra, La Huasteca 2da sección, Villahermosa, Tabasco, México, C. P. 86288.

PROFESOR-INVESTIGADOR, TITULAR A

PROGRAMA EDUCATIVO DE INGENIERÍA EN ALIMENTOS

SNI-1

CVU: 209506

References

Aprotosoaie, A. C., Luca, S. V., and Miron, A. (2016). Flavor chemistry of cocoa and cocoa products-an overview. Compresive Reviews in Food Science and Food Safety. 15(1): 73-91.

Arlorio, M., Coïsson, J. D., Travaglia, F., Varsaldi, F., Miglio G., Lombardi, G., and Martelli, A. (2005). Antioxidant and biological activity of phenolic pigments from theobroma cacao hulls extracted with supercritical CO2. Food Research International. 38(8): 1009-1014.

Arnaud, M. J. (2011). Pharmacokinetics and metabolism of natural methylxanthines in animal and man. In B. Fredholm (Ed.), Methylxanthines. Handbook of Experimental Pharmacology 200 (pp. 33-91). Berlin Heidelberg: Springer.

Asep, E. K., Jinap, S., Russly, A. R., Jahurul, M. H. A., Ghafoor, K., and Zaidul, I. S. M. (2016). The effect of flow rate at different pressures and temperatures on cocoa butter extracted from cocoa nib using supercritical carbon dioxide. Journal of Food Science and Technology. 53(5): 2287-2297.

Asep, E. K., Jinap, S., Tan, T. J., Abdul-Rahman, R., H archaran, S., and Hamid, N. (2008). The effects of particle size, fermentation and roasting of cocoa nibs on supercritical fluid extraction of cocoa butter. Journal of Food Engineering. 85(3): 450-458.

Beckett, S. (2008). The Science of Chocolate. Cambridge: The Royal Society of Chemistry. 24 Pp.

De-Melo, M. M. R., Silvestre, A. J. D., and Silva, C. M. (2014). Supercritical fluid extraction of vegetable matrices: Applications, trends and future perspectives of a convincing green technology. The Journal of Supercritical Fluids. 92: 115-176.

Drago-Serrano, M. E., López, L. M. y Saínz-Espuñes, T. D. (2006). Componentes bioactivos de alimentos funcionales de origen vegetal. Revista Mexicana de Ciencias Farmacéuticas. 37(4): 58-68.

FAO, Food and Agriculture Organization of the United Nations. (2017). Alimentación y agricultura sostenibles. [En línea]. Disponible en: http://www.fao.org/sustainability/es/. Fecha de consulta: 1 de septiembre de 2017.

Fernández-Trujillo, J. P. (2008). Supercritical CO2 extraction of sweet and hot paprika. Grasas y Aceites. 59(1): 7-15.

Hauthal, W. H. (2001). Advances with supercritical fluids. Chemosphere. 43(1): 123-135.

Herrero, M., Mendiola, J. A., Cifuentes, A., and Ibez, E. (2010). Supercritical fluid extraction: Recent advances and applications. Journal of Chromatography A. 1217(16): 2495-2511.

ICCO, International Cocoa Organization. (2015). Cocoa market statistics. [En línea]. Disponible en: http://www.worldcocoafoundation.org/. Fecha de consulta: 24 de noviembre de 2017.

Johannsen, M. and Brunner, G. (1994). Solubilities of the xanthines caffeine, theophylline and theobromine in supercritical carbon dioxide. Fluid Phase Equilibria. 95: 215-226.

Knez, Ž., Markočič, E., Leitgeb, M., Primožič, M., Hrnčič, M. K., and Škerget, M. (2014). Industrial applications of supercritical fluids: A review. Energy. 77: 235-243.

Kobori, K., Maruta, Y., Mineo, S., Shigematsu, T., and Hirayama, M. (2013). Polyphenol-retaining decaffeinated cocoa powder obtained by supercritical carbon dioxide extraction and its antioxidant activity. Foods. 2(4): 462-477.

Kowalska, H., Czajkowska, K., Cichowska, J., and Lenart, A. (2017). What’s new in biopotential of fruit and vegetable by-products applied in the food processing industry. Trends in Food Science & Technology. 67: 150-159.

Lecumberri, E., Mateos, R., Izquierdo-Pulido, M., Rupérez, P., Goya, L., and Bravo, L. (2007). Dietary fibre composition, antioxidant capacity and physico-chemical properties of a fibre-rich product from cocoa (Theobroma cacao L.). Food Chemistry. 104(3): 948-954.

Li, S., Berger, J., and Hartland, S. (1990). UV spectrophotometric determination of theobromine and caffeine in cocoa beans. Analytica Chimica Acta. 232: 409-412.

Li, S. and Hartland, S. (1992). Influence of co-solvents on solubility and selectivity in extraction of xanthines and cocoa butter from cocoa beans with supercritical CO2. The Journal of Supercritical Fluids. 5(1): 7-12.

Martínez, R., Torres, P., Meneses, M. A., Figueroa, J. G., Pérez-Álvarez, J. A., and Viuda-Martos, M. (2012). Chemical, technological and in vitro antio-xidant properties of cocoa (Theobroma cacao L.) coproducts. Food Research International. 49(1): 39-45.

Miller, D. J., Hawthorne, S. B., and McNally, M. E. P. (1993). Solventless collection of analytes by rapid depressurization after static supercritical fluid extraction. Analytical Chemistry. 65(8): 1038-1042.

Mohamed, R. S., Saldaña, M. D. A., Mazzafera, P., Zetzl, C., and Brunner, G. (2002). Extraction of caffeine, theobromine, and cocoa butter from brazilian cocoa beans using supercritical CO2 and ethane. Industrial & Engineering Chemistry Research. 41(26): 6751-6758.

Moratalla, R. (2008). Neurobiología de las metilxantinas. Trastornos Adictivos. 10(3): 201-207.

NMX-F-615-NORMEX-2004 (2004). Alimentosdeterminación de extracto etéreo (método soxhlet) en alimentos-método de prueba (cancela a la NMX-F-089-S-1978). [En línea]. Disponible en: http://www.dof.gob.mx/nota_detalle.php?codigo=678206&fecha=21/05/2004. Fecha de consulta: 16 de octubre de 2016.

Noor-Soffalina, S. S., Jinap, S., Nazamid, S., and Nazimah, S. A. H. (2009). Effect of polyphenol and pH on cocoa Maillard related flavor precursors in a lipidic model system. International Journal of Food Science and Technology. 44(1): 168-180.

Okiyama, D. C. G., Navarro, S. L. B., and Rodrigues, C. E. C. (2017). Cocoa shell and its compounds: Applications in the food industry. Trends in Food Science & Technology. 63: 103-112.

Pardo-Castaño, C., Velásquez, M., and Bolaños, G. (2015). Simple models for supercritical extraction of natural matter. The Journal of Supercritical Fluids. 97: 165-173.

Peralta-Jiménez, L. and Cañizares-Macías, M. P. (2013). Ultrasound-assisted method for extraction of theobromine and caffeine from cacao seeds and chocolate products. Food and Bioprocess Technology. 6(12): 3522-3529.

Pickenhagen, W., Dietrich, P., Keil, B., Polonsky, J., Nouaille, F., and Lederer, E. (1975). Identification of the bitter principle of cocoa. Helvetica Chimica Acta. 58(4): 1078-1086.

Putnik, P., Bursać-Kovačević, D., Režek-Jambrak, A., Barba, F. J., Cravotto, G., Binello, A., …, and Shpigelman, A. (2017). Innovative “Green” and Novel strategies for the extraction of bioactive added value compounds from Citrus Wastes—A Review. Molecules. 22 (680): 1-24.

Salajegheh, D., Vaziri, A., and Bastani, D. (2013). Supercritical extraction of cocoa butter from cocoa seed, using pure carbon dioxide, carbon dioxide with ethanol as co-solvent and ethane. Middle East Journal of Scientific Research. 13(8): 1010-1015.

Saltini, R., Akkerman, R., and Frosh, S. (2013). Optimizing chocolate production through traceability: A review of the influence of farming practices on cocoa bean quality. Food Control. 29(1): 167-187.

Sánchez-Camargo, A. P., Mendiola, J. A., Ibáñez, E., and Herrero, M. (2014). Supercritical fluid extraction. In J. Reedij (Ed.), Reference module in chemistry, molecular sciences and chemical engineering (pp. 1-17). Amsterdam: Elsevier.

Schieber, A., Stintzing, F. C., and Carle, R. (2001). By-products of plant food processing as a source of functional compounds – recent developments. Trends in Food Science & Technology. 12(11): 401-413.

Schwan, R. F., Rose, A. H., and Board, R. G. G. (1995). Microbial fermentation of cocoa beans, with emphasis on enzymatic degradation of the pulp. Journal of Applied Bacteriology Simposium Supplement. 79: 965-1075.

Valdez-Vázquez, I., Acevedo-Benítez, J. A., and Hernández-Santiago, C. (2010). Distribution and potential of bioenergy resources from agricultural activities in Mexico. Renewable and Sustainable Energy Reviews. 14(7): 2147-2153.

Published

2019-01-31

How to Cite

González-Alejo, F. A., Barajas-Fernández, J., & García-Alamilla, P. (2019). Extraction of soluble compounds from cocoa shell with supercritical CO2. A methilxantines and fat case. CienciaUAT, 13(2), 128–140. https://doi.org/10.29059/cienciauat.v13i2.1073

Issue

Section

Biotechnology and Agricultural Sciences