Infusion of the Buddleja scordioides Kunth medicinal plant used to treat intestinal inflammation

Authors

  • Cecilia Villegas-Novoa Tecnológico Nacional de México, Instituto Tecnológico de Durango, Departamento de Ingenierías Química y Bioquímica, Felipe Pescador núm. 1830 Ote., Durango, Durango, México, C. P. 34080.
  • Martha Rocío Moreno-Jiménez Tecnológico Nacional de México, Instituto Tecnológico de Durango, Departamento de Ingenierías Química y Bioquímica, Felipe Pescador núm. 1830 Ote., Durango, Durango, México, C. P. 34080.
  • Nuria Elizabeth Rocha-Guzmán Tecnológico Nacional de México, Instituto Tecnológico de Durango, Departamento de Ingenierías Química y Bioquímica, Felipe Pescador núm. 1830 Ote., Durango, Durango, México, C. P. 34080.

DOI:

https://doi.org/10.29059/cienciauat.v14i2.1287

Keywords:

infusion, medicinal plant, intestinal health

Abstract

 

Traditional medicine is an alternative resource for the treatment of multiple symptoms associated with gastrointestinal diseases such as inflammation. Herbal infusions, unlike pharmacological medicines, contain multiple chemical compounds of diverse nature, which act synergistically to give an anti-inflammatory response. The Buddleja scordioides Kunth Scrophulariaceae plant is known for its anti-inflammatory effects and is commonly used to combat symptoms related to gastrointestinal disorders such as diarrhea, pain and inflammation. The easy acquisition and popular consumption of Buddleja scordioides, make this plant an important research objective for the area of intestinal health. The aim of this research was to gather information on the phytochemical components present in Buddleja scordioides, summarize information related to the absorption, digestion and transport of herbal compounds along the gastrointestinal tract and define its antioxidant and anti-inflammatory effect. We found that Buddleja scordioides is a species used as a medicinal plant to treat symptoms associated with gastrointestinal inflammation process. The ethnopharmacology use of the B. scordioides plant is supported by scientific research that attributes its antioxidant and anti-inflammatory activity to the plant´s phytochemical content.

 

References

Ahmed, I. S. and Ayres, J. W. (2011). Comparison of in vitro and in vivo performance of a colonic delivery system. International Journal of Pharmaceutics. 409(1-2): 169-77.

Al Ati, H. Y., Fawzy, G. A., El-Gamal, A. A., Khalil, A. T., El-Din-El Tahir, K., …, and Gilani, A. H. (2015). Phytochemical and biological evaluation of Buddleja polystachya growing in Saudi Arabia. Pakistan Journal of Pharmaceutical Sciences. 28(4): 1533-1540.

Alonso-Castro, A. J., Domínguez, F., Mandonado-Miranda, J. J., Castillo-Pérez, L. J., Carranza-Álvarez, C., Solano, E., and Ruiz-Padilla, A. J. (2016). Use of medicinal plants by health professionals in Mexico. Journal of Ethnopharmacology. 198: 81-86.

Apte, R. N. and Voronov, E. (2002). Interleukin-1-a major pleiotropic cytokine in tumor-host interactions. Seminars in Cancer Biology. 12(4): 277-290.

Ávila, J. G. and Romo-de-Vivar, A. (2002). Triterpenoid saponins and other glycosides from Buddleja scordioides. Biochemical Systematics and Ecology. 10(30): 1003-1005.

Beekmann, K., Actis-Goretta, L., van-Bladeren, P. J., Dionisi, Destaillats, F., and Rietjens, I. M. (2012). A state-of-the-art overview of the effect of metabolic conjugation on the biological activity of flavonoids. Food & function. 3(10): 1008-1018.

Blum, H. E. (2017). The human microbiome. Advances in Medical Sciences. 62(2): 414-420.

Bolca, S., van-de-Wiele, T., and Possemiers, S. (2013). Gut metabotypes govern health effects of dietary polyphenols. Current Opinion in Biotechnology. 24(2): 220-225.

Brglez, E., Knez Hrnčič, M., Škerget, M., Knez, Ž., and Bren, U. (2016). Polyphenols: extraction methods, antioxidative action, bioavailability and anticarcinogenic effects. Molecules. 21(7): 901.

Cao, F., Liu, J., Sha, B. X., and Pan, H. F. (2019). Natural products: Experimental efficient agents for in-flammatory bowel disease therapy. Current Pharmaceutical Desing. 25(1): 31840596.

Cho, Y. H., Kim, N. H., Khan, I., Yu, J. M., Jung, H. G., Kim, H. H., …, and An, B. J. (2016). Anti-inflammatory potential of Quercetin-3-O- -D-(“2”-galloyl)-glucopyranoside and quercetin isolated from Diospyros kaki calyxvia suppression of MAP signaling molecules in LPS-induced RAW 264.7 Macrophages. Journal of Food Sciences. 81(10): C2447-C2456.

Cortés, A. R., Delgadillo, A. J., Hurtado, M., Domínguez-Ramírez, A. M., Medina, J. R., and Aoki, K. (2006). The antispasmodic activity of Buddleja scordioides and Buddleja perfoliata on isolated intestinal preparations. Biological and Pharmaceutical Bulletin. 29(6): 1186-1190.

D´Archivio, M., Filesi, C., Varì, R., Scazzocchio, B., and Masella, R. (2010). Bioavailability of the polyphenols: status and controversies. International Journal of Molecular Sciences. 11(4): 1321-1342.

Díaz-Rivas, J. O., González-Laredo, R. F., Chávez-Simental, J. A., Montoya-Ayón, J. B., Moreno-Jiménez, M. R., Gallegos-Infante, J. A., and Rocha-Guzmán, N. E. (2018a). Comprehensive characterization of extractable phenolic compounds by UPLC-PDA-ESI-QqQ of Buddleja scordiodes plants elicited with salicylic acid. Journal of Chemistry. 1-10.

Díaz-Rivas, J. O., Gallegos-Infante, J., Valdez-Fragoso, A., Rocha-Guzmán, N., González-Laredo, R., Rodríguez-Ramírez, A., ..., and Moreno-Jiménez, M. (2018b). Comparative study of phenolic and content in infusions and concentrated infusions of Buddleja scordioides treated by high-intensity pulsed electric fields (HiPEF). Beverages. 4(4): 8.

Díaz-Rivas, J. O., Herrera-Carrera, E., Gallegos-Infante, J. A., Rocha-Guzmán, N. E., and González-Laredo, R. F. (2015). Gastroprotective potential of Buddleja scordioides Kunth Scrophulariaceae infusions; effects into the modulation of antioxidant enzymes and inflammation markers in an in vivo model. Journal of ethnopharmacology. 169: 280-286.

Ekor, M. (2014). The growing use of herbal medicines: issues relating to adverse reactions and challenges in monitoring safety. Frontiers in Pharmacology. 4: 177.

Felgines, C., Talavéra, S., Gonthier, M. P., Texier, O., Scalbert, A., Lamaison, J. L., and Rémésy, C. (2003). Strawberry anthocyanins are recovered in urine as glucuro-andsulfoconjugates in humans. The Journal of Nutrition. 133(5): 1296-1301.

Feng, X., Wang, X., Liu, Y., and Di, X. (2015). Linarin inhibits the acetylcholinesterase activity in vitro and ex vivo. Iranian Journal of Pharmaceutical Research: IJPR. 14(3): 949-954.

Fine, S., Papamichael, K., and Cheifetz, A. S. (2019). Etiology and Management of lack or loss of response to anti-tumor necrosis factor therapy in patients with inflammatory bowel disease. Gastroenterology & Hepatology (N Y). 15(12): 656-665.

García-Regalado, G. (2015). Universidad Autónoma de Aguascalientes. Dirección General de Difusión y Vinculación. [En línea]. Disponible en: http://www.uaa.mx/direcciones/dgdv/editorial/. Fecha de consulta: 11 de septiembre de 2019.

García-Villalba, R., Vissenaekens, H., Pitart, J., Romo-Vaquero, M., Espín, J. C., and Grootaert, C. (2017). Gastrointestinal simulation model TWIN-SHIME shows differences between human urolithin-metabotypes in gut microbiota composition, pomegranate polyphenol metabolism, and transport along the intestinal tract. Journal of Agricultural and Food Chemistry. 65(27): 5480-5493.

Gawlik-Dziki, U., Dziki, D., Świeca, M., and Nowak, R. (2017). Mechanism of action and interactions between xanthine oxidase inhibitors derived from natural sources of chlorogenic and ferulic acids. Food Chemistry. 225: 138-145.

González-Elizondo, M. S., López-Enriquez, I. L. y Herrera-Arrieta, Y. (2017). Importancia económica y usos tradicionales de la flora. México: La Biodiversidad en Durango. Estudio de Estado. Comisión Nacional para el conocimiento y uso de la Biodiversidad (CONABIO) y Secretaría de Recursos Naturales y Medio Ambiente de Durango (SRNYMA). 528 Pp.

Gutiérrez-Grijalva, E. P., Ambriz-Pére, D. L., Leyva-López, N., Castillo-López, I., and Heredia, J. B. (2016). Review: dietary phenolic compounds, health benefits and bioaccessibility, in Archivos Latinoamericanos de Nutrición. [En línea]. Disponible en: htttp://www.alanrevista.org/ediciones/2016/2/art-1/. Fecha de consulta: 11 de noviembre de 2019.

Gutiérrez-Rebolledo, G. A., Estrada-Zúñiga, M. E., Garduño-Siliciano, L., García-Gutiérrez, G. E., Reséndiz-Mora, C. A., Calderón-Amador, J., and Cruz-Sosa, F. (2019). In vivo anti-arthritic effect and repeated dose toxicity of standardized methanolic extracts of Buddleja cordata Kunth (Scrophulariaceae) wild plant leaves and cell culture. Journal of Ethnopharmacology. 240: 111875.

Hallac, B. B., Sannigrahi, P., Pu, Y., Ray, M., Murphy, R. J., and Ragauskas, A. J. (2009). Biomass characterization of Buddleja davidii: a potential feedstock for biofuel production. Journal of Agricultural and Food Chemistry. 57(4): 1275-1278.

Hamanaka, R. B. and Chandel, N. S. (2010). Mitochondrial reactive oxygen species regulate cellular signaling and dictate biological outcomes. Trends in Biochemical Sciences. 35(9): 505-513.

Herrera-Carrera, E., Moreno-Jiménez, M. R., Rocha-Guzmán, N. E., Gallegos-Infante, J. A., Díaz-Rivas, J. O., Gamboa-Gómez, C. I., and González-Laredo, R. F. (2015). Phenolic composition of selected herbal infusions and their anti-inflammatory effect on a colonic in vitro in HT-29 cells. Cogent Food & Agriculture. 1(1): 1059033.

Hoshino, T., Tsutsumi, S., Tomisato, W., Hwang, H. J., Tsuchiya, T., and Mizushima, T. (2003). Prostaglandin E2 protects gastric mucosal cells from apoptosisvia EP2 and EP4 receptor activation. Journal of Biological Chemistry. 278(15): 12752-12758.

Houghton, P. J. (1984). Ethnopharmacology of some Buddleja species. Journal of Ethnopharmacology. 11(3): 293-308.

Jacobo-Herrera, N. J., Jacobo-Herrera, F. E., Zentella-Dehesa, A., Andrade-Cetto, A., Heinrich M., and Pérez-Plasencia, C. (2016). Medicinal plants used in Mexican traditional medicine for the treatment of colorectal cancer. Journal of Ethnopharmacology. 179: 391-402.

Jia, Z., Nallasamy, P., Liu, D., Shah, H., Li, J. Z., Chitrakar, R., …, and Li, Y. (2015). Luteolin protects against vascular inflammation in mice and TNF-alpha-in-duced monocyte adhesion to endothelial cells via suppressing IKB /NF- B signaling pathway. Journal of Nutritional Biochemistry. 26(3): 293-302.

Jiang, W., Luo, F., Lu, Q., Liu, J., Li, P., Wang, X., and Ding, X. (2015). The protective effect of Trillin LPS-induced acute lung injury by the regulations of inflammation and oxidative state. Chemico-biological interactions. 243: 127-134.

Joshi, S., Mishra, D., Bisht, G., and Khetwal, K. S. (2012). Comparative study of essential oil composition of Buddleja asiatica and Buddleja davidii aerial parts. International Journal of Green Pharmacy. 6: 23-25.

Kardum, N. and Glibetic, M. (2018). Polyphenols and their Interactions with other dietary compounds: Implications for human health. Advances in Food and Nutrition Research. 84: 103-144.

Kawabata, K., Sugiyama, Y., Sakano, T., and Ohigashi, H. (2013). Flavonols enhanced production of antiinflammatory substance(s) by Bifidobacterium adolescentis: prebiotic actions of galangin, quercetin, and fisetin. BioFactors. 39(4): 422-429.

Khan, S., Ullah, H., and Zhang, L. (2019) Bioactive constituents form Buddleja species. Pak. J. Pharm. Sci. 32(2): 721-741.

Kim, J. B., Han, A. R., Park, E. Y., Kim, J. Y., Cho, W., Lee, J., and Lee, K. T. (2007). Inhibition of LPS-induced iNOS, COX-2 and cytokines expression by poncirin through the NF-kappaB inactivation in RAW 264.7 macrophage cells. Biological and Pharmaceutical Bulletin. 30(12): 2345-2351.

Korkina, L. G. (2007). Phenylpropanoids as naturally occurring antioxidants: from plant defense to human health. Cellular and Molecular Biology. 53(1): 15-25.

Kuntz. S., Rudloff, S., Asseburg, H., Borsch, C., Fröhling, B., Unger, F., and Kuntz, C. (2015). Uptake and bioavailability of anthocyanins and phenolic acids from grape/blueberry juice and smoothie in vitro and in vivo. Journal of Nutrition. 113(7): 1044-1055.

Landry, Y. and Gies J. P. (2008). Drugs and their molecular targets: an updated overview. Fundamental and Clinical Pharmacololy. 22(1): 1-18.

Li, X., Jiang, X., Sun, J., Zhu, C., Li, X., Tian, L., ..., and Bai, W. (2017). Cytoprotective effects of dietary flavonoids against cadmium-induced toxicity. Annals of New York Academy Sciences. 1398(1): 5-19.

Li, C. and Wang, M. H. (2011). Anti-inflammatory effect of the water fraction from hawthorn fruit on LPS-stimulated RAW 264.7 cells. Nutrition research and practice. 5(2): 101-106.

Mao, Z., Gan, C., Zhu, J., Ma, N., and Wu, N. (2017). Anti-atherosclerotic activities of flavonoids from the flowers of Helichrysum arenarium L. Moench through the pathway of anti-inflammation. Bioorganic & medicinal chemistry letters. 27(12): 2812-2817.

Martínez, M. (1994). Catálogo de nombres vulgares y científicos de las plantas mexicanas (segunda edición). México: Ed. Compañía Editorial Continental. 20 Pp.

Marvalin, C. and Azerad, R. (2011). Microbial glucuronidation of polyphenols. Journal of Molecular Catalysis B: Enzymatic. 73: 43-72.

Mascaraque, C., González, R., Suárez, M. D., Zarzuelo, A., Sánchez-de-Medina, F., and Martínez-Augustin, O. (2015). Intestinal anti-inflammatory activity of apigenin K in two rat colitis models induced by trinitrobenzenesulfonic acid and dextran sulphate sodium. British Journal of Nutrition. 113(4): 618-626.

Meena, K., Sakharkar, K., Rajamanickam, C., Babu, S. Jitender M., Ramesh, C., and Jian, Y. (2019). Preclinical: drug target identification and validation in human. Encyclopedia of Bioinformatics and Computational Biology. 2(2019): 1093-1098.

Morrow, K. N., Coopersmith, C. M., and Ford, M. L. (2019). IL-17, IL-27, and IL-33: A Novel axis linked to immunological dysfunction during sepsis. Frontiers in Immunology. 10: 1982.

OMS, Organización Mundial de la Salud (1978). The promotion and development of traditional medicine, Ed. WHO, Technical reports series, Ginebra. [En línea]. Disponible en: https://apps.who.int/iris/handle/10665/40995. Fecha de consulta: 13 de septiembre de 2019.

Possemiers, S., Bolca, S., Verstraete, W., and Heyerick, A. (2011). The intestinal microbiome: a separate organ inside the body with the metabolic potential to influence the bioactivity of botanicals. Fitoterapia. 82(1): 53-66.

Ramírez, R., Vargas, P. O., Arreola, H., Cedano, M., González-Villarreal, L. M., Harker, M., … y Pérez-de-la-Rosa, J. (2010). Catálogo de plantas vasculares de Jalisco. México: Universidad Autónoma Metropolitana. 143 Pp.

Rocha-Guzmán, N. E., Simental-Mendía, L. E., Barragán-Zúñiga, L. J., Ramírez-España, J. C., Gallegos-Infante, J. A., Luján-Mendoza, C. I., and Gamboa-Gómez, C. I. (2018). Effect of Buddleja scordioides K. leaves infusion on lipid peroxidation in mice with ultraviolet light-in-duced oxidative stress. Medicinal Chemistry Research. 27(10): 2379-2385.

Rothwell, J. A., Urpi-Sarda, M., Boto-Ordoñez, M., Llorach, R., Farran-Codina, A., and Scalbert, A. (2016). Systemic analysis of the polyphenol metabolome using the phenol-explorer database. Molecular nutrition & food research. 60(1): 203-211.

Sousa, T., Paterson, R., Moore, V., Carlsson, A., Abrahamsson, B., and Basit, A. W. (2008). The gastrointestinal microbiota as a site for the biotransformation of drugs. International Journal of Pharmaceutics. 363(1-2): 1-25.

Strieter, R. M., Kunkel, S. L., Showell, H. J., Remick, D. G., Phan, S. H., Ward, V. A., and Marks, R. M. (1989). Endothelial cell gene expression of a neutrophil chemotactic factor by TNF alpha, LPS, and IL-1 beta. Science. 243(4897): 1467-1469.

Suwalsky, M., Duguet, J., and Speisky, H. (2017). An in vitro study of the antioxidant and antihemolytic properties of Buddleja globosa (Matico). The Journal of Membrane Biology 250(3): 239-248.

Tavsan, Z. and Kayali, H. A. (2019). Flavonoids showed anticancer effects on the ovarian cancer cells: Involvement of reactive oxygen species, apoptosis, cell cycle and invasion. Biomedicine and Pharmacotheraphy. 116: 109004.

Tomás-Barberán, F. A., Selma, M. V., and Espín, J. C. (2016). Interactions of gut microbiota with dietary polyphenols and consequences to human health. Current Opinion in Clinical Nutrition and Metabolic Care. 19(6):471-476.

Villaseñor, J. L. (2016). Checklist of the native vascular plants of Mexico. Catálogo de las plantas vasculares nativas de México. Revista Mexicana de Biodiversidad. 87: 559-902.

Wang, C., Petriello, M. C., Zhu, B., and Hennig, B. (2019). PCB 126 induces monocyte/macrophage polarization and inflammation through AhR and NF-B pathways. Toxicology and Applied Pharmacology. 367: 71-81.

Williamson, G. and Clifford, M. N. (2017). Role of the small intestine, colon and microbiota in determining the metabolic fate of polyphenols. Biochemical Pharmacological. 139: 24-39.

Wood-dos-Santos, T., Cristina, P. Q., Teixeira, L., Gambero, A., Villena, J., and Lima-Ribeiro. M. (2018). Effects of polyphenols on thermogenesis and mitochondrial biogenesis. International Journal of Molecular Sciences. 19(9): 2757.

Xie, Y., Xu, D., Cui, W., and Shen, W. (2012). Mutation of Arabidopsis HY1 causes UV-Chypersensitivity by impairing carotenoid and flavonoid biosynthesis and the down-regulation of antioxidant defence. Journal of Experimental Botany. 63(10): 3869-3883.

Yamamoto, A., Nitta, S., Miyase, T., Ueno, A., and Wu, L. J. (1993). Phenylethanoid and lignan-iridoid complex glycosides from roots of Buddleja davidii. Phytochemistry. 32(2): 421-425.

Yasumoto, K., Okamoto, S., Mukaida, N., Murakami, S., Mai, M., and Matsushima, K. (1992). Tumor necrosis factor alpha and interferon gamma synergistically induce interleukin 8 production in a human gastric cancer cell line through acting concurrently on AP-1 and NF-kB-like binding sites of the interleukin 8 gene. Journal of Biological Chemistry. 267(31): 22506-22511.

Yue, H., Brown, M., Knowles, J., Wang, H., Broomhead, D. S., and Kell, D. B. (2006). Insights into the behavior of systems biology models from dynamic sensitivity and identifiability analysis: a case study of an NF-B signaling pathway. Molecular BioSystems. 2(12): 640-649.

Yuen, K. H. (2010). The transit of dosage forms through the small intestine. International Journal of Pharmaceutics. 395(1-2): 9-16.

Zamudio-Ruiz, S. (2012). La diversidad vegetal. En CONABIO (Ed). La biodiversidad en Guanajuato. Estudio de estado. Vol. II. México: Comisión Nacional para el conocimiento y uso de la biodiversidad (CONABIO)/Instituto de Ecología del Estado de Guanajuato (IEE). 97-108 Pp.

Zhang, Q., Cao, Y. F., Ran, R. X., Li, R. S., Wu, X., Dong, P. P., …, and Wang, W. M. (2016). Strong specific inhibition of UDP-glucuronosyltransferase 2B7 by atractylenolide I and III. Phytotheraphy Research. 30(1): 25-30.

Zhang, X., Wang, G., Gurley, E. C., and Zhou, H. (2014).Flavonoid apigenin inhibits lipopolysaccharideinduced inflammatory response through multiple mechanisms in Macrophages. PLoS ONE. 9(9): e107072.

Published

2020-01-31

How to Cite

Villegas-Novoa, C., Moreno-Jiménez, M. R., & Rocha-Guzmán, N. E. (2020). Infusion of the Buddleja scordioides Kunth medicinal plant used to treat intestinal inflammation. CienciaUAT, 14(2), 21–33. https://doi.org/10.29059/cienciauat.v14i2.1287

Issue

Section

Biology and Chemistry

Similar Articles

<< < 14 15 

You may also start an advanced similarity search for this article.