Flow pattern effect on the pressure drop of biphasic flow through porous media from a fractal dimension perspective

Authors

  • Edgardo Jonathan Suárez-Domínguez Universidad Autónoma de Tamaulipas, Facultad de Arquitectura, Diseño y Urbanismo, Centro Universitario sur, Circuito Universitario s/n, Tampico, Tamaulipas, México, C. P. 89000. http://orcid.org/0000-0002-1342-5732
  • Arturo Palacio-Pérez Universidad Nacional Autónoma de México, Instituto de Ingeniería, Coyoacán, Ciudad de México, México.
  • Josúe Francisco Pérez-Sánchez Universidad Autónoma de Tamaulipas, Facultad de Arquitectura, Diseño y Urbanismo, Centro Universitario sur, Circuito Universitario s/n, Tampico, Tamaulipas, México, C. P. 89000. Tecnológico Nacional de México, Instituto Tecnológico de Ciudad Madero, Centro de Investigación en Petroquímica, Altamira, Tamaulipas, México.
  • Elena Izquierdo-Kulich Universidad de la Habana, Facultad de Química, Departamento de Química-Física, Vedado, La Habana, Cuba

DOI:

https://doi.org/10.29059/cienciauat.v14i2.1308

Keywords:

fractal reservoir, porous bed, complex flow, fractional equation of transport, pressure drop prediction

Abstract

The description of the behavior of a biphasic flow through porous beds by means of models based on the equations of transport phenomena is made difficult due to the geometric irregularity of the channels that are formed between the solid particles that make up the bed. Deterministic models developed for single-phase flows require the adjustment of empirical constants and cannot be extrapolated to biphasic flows, where the flow pattern generated in the system significantly influences the behavior of the total flow and the frictional pressure losses. Therefore, in this paper, we present a model to describe the behavior of the biphasic flow in relation to the flow pattern and the morphology, dimensions, and operating conditions of the porous bed, whose obtainment was based on a hierarchy that used the equations for conservation of momentum, fractal geometry and fractional differential calculus jointly. The model predicts that, for the same composition of the biphasic flow, the flow pattern significantly influences friction pressure losses, with an increase when one of the phases is dispersed within the other. On the other hand, the increase in the fractal dimension of the pores, in turn, causes an increase in pressure loss due to friction. The model has limitations associated with the considerations established during its collection, since it is only valid when the effects of surface tension are more significant than the gravitational effects, the effects of the latter being disregarded on the flow pattern, as well as for the stationary state.

References

Basu, M., Zahoor, A., and Khan, R. A. (2019). Review of Fluid Flow and Heat Transfer through Microchannels. Journal of Scientific and Technical Advancements. 5(1): 17-20.

Bear, J. (2018). Modeling Phenomena of Flow and Transport in Porous Media. Springer: Cham. 1-98 Pp.

Berg, C. F. (2014). Permeability description by characteristic length, tortuosity, constriction and porosity. Transport in porous media. 103(3): 381-400.

Flury, M. and Aramrak, S. (2017). Role of air-water interfaces in colloid transport in porous media: A review. Water Resources Research. 53(7): 5247-5275.

Hassanean, M. H., Awad, M. E., Marwan, H., Bhran, A. A., and Kaoud, M. (2016). Studying the rheological properties and the influence of drag reduction on a waxy crude oil in pipeline flow. Egyptian Journal of Petroleum. 25(1): 39-44.

Hjelmeland, O. S. and Larrondo, L. E. (1986). Experimental investigation of the effects of temperature, pressure, and crude oil composition on interfacial properties. SPE Reservoir Engineering. 1(04): 321-328.

Huang, S., Yao, Y., Zhang, S., Ji, J., and Ma, R. (2018). A Fractal Model for Oil Transport in Tight Porous Media. Transport in Porous Media. 121(3):725-739.

Ismail, A. S. I., Ismail, I., Zoveidavianpoor, M., Mohsin, R., Piroozian, A., Misnan, M. S., and Sariman, M. Z. (2015). Review of oil–water through pipes. Flow Measurement and Instrumentation. 45:357-374.

Kamal, M. S. (2016). A review of gemini surfactants: potential application in enhanced oil recovery. Journal of Surfactants and Detergents. 19(2): 223-236.

Kleinstreuer, C. (2017). Two-Phase Flow: Theory and Applications. CRC EE.UU: Press. 69-99 Pp.

Kokubun, M. A. E., Radu, F. A., Keilegavlen, E., Kumar, K., and Spildo, K. (2018). Transport of polymer particles in an oil-water flow in porous media: enhancing oil recovery. Transport in Porous Media. 126(2): 501-519.

Ledesma-Durán, A., Hernández, S. I., and Santamaría-Holek, I. (2017). Effect of Surface Diffusion on Adsorption–Desorption and Catalytic Kinetics in Irregular Pores. II. Macro-Kinetics. The Journal of Physical Chemistry C. 121(27): 14557-14565.

Mahzari, P., Taura, U., and Sohrabi, M. (2018). An improved methodology for estimation of two-phase relative permeability functions for heavy oil displacement involving compositional effects and instability. Computational Geosciences. 22(4): 975-991.

Mandelbrot, B. B. (1989). Multifractal measures, especially for the geophysicist. In C. H. Scholz and B. B. Mandelbrot (Eds.), Fractals in geophysics (pp. 5-42). Basel: Birkhäuser.

Mendoza, C. I. and Santamaria-Holek, I. (2010). Rheology of concentrated emulsions of spherical droplets. Applied Rheology. 20(2): 16-23.

Mucharam, L., Rahmawati, S., and Ramadhani, R. (2017). Drag reducer selection for oil pipelinebased laboratory experiment. Modern Applied Science. 12(1): 112.

Perazzo, A., Tomaiuolo, G., Preziosi, V., and Guido, S. (2018). Emulsions in porous media: From single droplet behavior to applications for oil recovery. Advances in colloid and interface science. 256: 305-325.

Pesavento, F., Schrefler, B. A., and Sciumè, G. (2017). Multiphase flow in deforming porous media: A review. Archives of Computational Methods in Engineering. 24(2): 423-448.

Piroozian, A., Hemmati, M., Ismail, I., Manan, M. A., Rashidi, M. M., and Mohsin, R. (2017). An experimental study of flow patterns pertinent to waxy crude oil-water two-phase flows. Chemical Engineering Science. 164: 313-332.

Rahner, M. S., Halisch, M., Fernandes, C. P., Weller, A., and dos-Santos, V. S. S. (2018). Fractal dimensions of pore spaces in unconventional reservoir rocks using X-ray nano-and micro-computed tomography. Journal of Natural Gas Science and Engineering. 55: 298-311.

Rasband, W. S. (2018). ImageJ, U. S. National Institutes of Health, Bethesda, Maryland, USA. [En línea]. Disponible en: https://imagej.nih.gov/ij/,1997-2018. Fecha de consulta: 2 de julio de 2019.

Suárez-Domínguez, E. J. (2017). Estudio del transporte estratificado de un líquido de alta viscosidad y otro de baja viscosidad, Tesis doctoral, Universidad Nacional Autónoma de México. [En línea]. Disponible en: http://132.248.52.100:8080/xmlui/handle/132.248.52.100/14368. Fecha de consulta: 26 de septiembre de 2019.

Suárez-Domínguez, E. J., Pérez-Sánchez, J. F., Palacio-Pérez, A., and Izquierdo-Kulich, E. (2018). New mixing rule for analysis of the influence of a formulation on an extraheavy oil crude viscosity. Revista Mexicana de Ingeniería Química. 17(1):99-106.

Tan, X. H., Li, X. P., Zhang, L. H., Liu, J. Y., and Cai, J. (2015). Analysis of transient flow and starting pressure gradient of power-law fluid in fractal porous media. International Journal of Modern Physics C. 26(04): 1550045.

Valdes-Perez, A., Pulido, H., Cinco-Ley, H., and Galicia-Muñoz, G. (2012). Discretization of the resistivity, capillary pressure and relative permeability for naturally fractured reservoirs. In Proceedings: Thirty-Seventh Workshop on Geothermal Reservoir Engineering. [En línea]. Disponible en: https://pangea.stanford.edu/ERE/pdf/IGAstandard/SGW/2012/Valdesperez1.pdf. Fecha de consulta: 25 de julio de 2019.

Valdéz-Cepeda, R. D. and Olivares-Sáenz, E. (1998). Geometría fractal en la ciencia del suelo. Terra Latinoamericana. 16(3): 277-288.

Wang, W., Fan, D., Sheng, G., Chen, Z., and Su, Y. (2019). A review of analytical and semi-analytical fluid flow models for ultra-tight hydrocarbon reservoirs. Fuel. 256: 115737.

Wopara, O. F. and Iyuke, S. E. (2018). Review of studies on pore-network modeling of wettability effects on waterflood oil recovery. Journal of Petroleum and Gas Engineering. 9(2): 11-22.

Published

2020-01-31

How to Cite

Suárez-Domínguez, E. J., Palacio-Pérez, A., Pérez-Sánchez, J. F., & Izquierdo-Kulich, E. (2020). Flow pattern effect on the pressure drop of biphasic flow through porous media from a fractal dimension perspective. CienciaUAT, 14(2), 146–159. https://doi.org/10.29059/cienciauat.v14i2.1308

Issue

Section

Engineering

Similar Articles

<< < 7 8 9 

You may also start an advanced similarity search for this article.