Extracto de Randia monantha encapsulado con proteína de haba (Vicia faba): actividad antifúngica in vitro y caracterización fisicoquímica

Autores/as

  • Claudia Marcela Guillén-Jiménez Tecnológico Nacional de México, Instituto Tecnológico de Tepic, Laboratorio Integral de Investigación en Alimentos, Av. Tecnológico núm. 2595, Lagos del Country, Tepic, Nayarit, México, C. P. 63175.
  • Montserrat Calderón-Santoyo Tecnológico Nacional de México, Instituto Tecnológico de Tepic, Laboratorio Integral de Investigación en Alimentos, Av. Tecnológico núm. 2595, Lagos del Country, Tepic, Nayarit, México, C. P. 63175.
  • Katia Nayely González-Gutiérrez Tecnológico Nacional de México, Instituto Tecnológico de Tepic, Laboratorio Integral de Investigación en Alimentos, Av. Tecnológico núm. 2595, Lagos del Country, Tepic, Nayarit, México, C. P. 63175.
  • Juan Arturo Ragazzo-Sánchez (SNI II), Instituto Tecnológico de Tepic https://orcid.org/0000-0002-2298-3306

DOI:

https://doi.org/10.29059/cienciauat.v19i2.1933

Palabras clave:

proteína vegetal, secado por aspersión, encapsulación, capacidad inhibitoria

Resumen

Las proteínas vegetales han sido empleadas en diversos estudios como material de pared en la encapsulación de compuestos de alto valor biológico, debido a su buena accesibilidad y a la fácil liberación del principio activo. El haba (Vicia faba) es una legumbre con alto contenido de proteínas susceptible de ser utilizada como material encapsulante. Randia monantha contiene compuestos con actividad antifúngica, por lo que su extracción y encapsulación representa una alternativa para poder usarlos en el control post-cosecha de hongos fitopatógenos. El objetivo del presente trabajo fue encapsular por secado por aspersión un extracto etanólico de R. monantha utilizando como material de pared proteína de haba para el control de Colletotrichum gloeosporioides. El extracto se obtuvo mediante extracción etanólica asistida por ultrasonido y se encapsuló usando secado por aspersión con diferentes concentraciones de proteína de haba (15 %, 20 %, 25 % y 30 %). Posteriormente, se evaluó la actividad antifúngica del extracto encapsulado y se realizó la caracterización térmica y fisicoquímica de las cápsulas. El extracto encapsulado con proteína al 30 % presentó la mayor inhibición de la germinación de esporas (65.4 %) y del crecimiento micelial de C. gloeosporioides (55.23 %) y estabilidad a la temperatura y a la radiación UV. Las cápsulas registraron alta eficiencia de encapsulación y solubilidad, con baja actividad de agua e higroscopicidad, características deseables para un producto en polvo. La proteína de haba, como material encapsulante, mostró ser una alternativa prometedora para su uso en el control de C. gloeosporioides, ya que preservó la capacidad antifúngica del extracto de R. monantha, presentó propiedades fotoprotectoras y termoprotectoras y las cápsulas cumplieron con los parámetros fisicoquímicos de un producto en polvo.

Citas

Aguilar-Veloz, L. M., Calderón-Santoyo, M., Vázquez-González, Y., & Ragazzo-Sánchez, J. A. (2020). Application of essential oils and polyphenols as na-tural antimicrobial agents in postharvest treatments: Advances and challenges. Food Science & Nutrition, 8(6), 2555-2568. https://doi:10.1002/fsn3.1437

Alehosseini, A., Ghorani, B., Sarabi-Jamab, M., & Tucker, N. (2018). Principles of electrospraying: A new approach in protection of bioactive compounds in foods. Critical Reviews in Food Science and Nutrition, 58(14), 2346-2363. https://doi.org/10.1080/10408398.2017.1323723.

Alpizar-Reyes, E., Castaño, J., Carrillo-Navas, H., Alvarez-Ramírez, J., Gallardo-Rivera, R., Pérez-Alonso, C., & Guadarrama-Lezama, A. Y. (2018). Thermodynamic sorption analysis and glass transition temperature of faba bean (Vicia faba L.) protein. Journal of Food Science and Technology, 55(3), 935-943. doi:10.1007/s13197-017-3001-1

Beyer, S. F., Beesley, A., Rohmann, P. F., Schultheiss, H., Conrath, U., & Langenbach, C. J. (2019). The Arabidopsis non-host defence-associated coumarin scopoletin protects soybean from asian soybean rust. The Plant Journal, 99(3), 397-413. https://doi.org/10.1111/tpj.14426

Calderón-Santoyo, M., Iñiguez-Moreno, M., Barros-Castillo, J. C., Miss-Zacarías, D. M., Díaz, J. A., & Ragazzo-Sánchez, J. A. (2022). Microencapsulation of citral with Arabic gum and sodium alginate for the control of Fusarium pseudocircinatum in bananas. Iranian Polymer Journal, 31(5), 665-676. https://doi.org/10.1007/s13726-022-01033-z

Castano-Duque, L., Lebar, M. D., Mack, B. M., Lohmar, J. M., & Carter-Wientjes, C. (2024). Investigating the impact of flavonoids on Aspergillus flavus: Insights into cell wall damage and biofilms. Journal of Fungi, 10(9), 665. https://doi.org/10.3390/jof10090665

Chamudeshwari, J., Parthasarathi, S., & Ali, R. (2024). Chapter 4 - Spray drying of milk and milk products. In S. Mahdi-Jafari & K. Samborska (Eds.), Spray drying for the food industry (pp. 87-123). Woodhead Publishing. https://doi.org/10.1016/B978-0-12-819799-8.00002-8

Dissanayake, T. & Bandara, N. (2024). Protein-based encapsulation systems for codelivery of bioactive compounds: Recent studies and potential applications. Current Opinion in Food Science, 57, 101181. https://doi.org/10.1016/j.cofs.2024.101181

Dumitrașcu, L., Stănciuc, N., & Aprodu, I. (2021). Encapsulation of anthocyanins from cornelian cherry fruits using heated or non-heated soy proteins. Foods, 10(6), 1342. https://doi.org/10.3390/foods10061342

Duodu, K. G. & Apea-Bah, F. B. (2017). African legumes: Nutritional and health-promoting attributes. In R. N. John & J. M. Taylor (Eds.), Gluten-Free ancient grains (pp. 223-269). Elsevier. Woodhead Publishing Series in Food Science, Technology and Nutrition.

FAO, Food and Agriculture Organization of the United Nations (2021). Cultivos y productos de ganadería. [En línea]. Disponible en: https://www.fao.org/faostat/es/#data/QCL. Fecha de consulta: 16 de mayo de 2023.

Fatnassi, M., Tourné-Péteilh, C., Peralta, P., Cacciaguerra, T., Dieudonné, P., Devoisselle, J. M., & Alonso, B. (2013). Encapsulation of complementary model drugs in spray-dried nanostructured materials. Journal of Sol-Gel Science and Technology, 68(2), 307-316. https://doi.org/10.1007/s10971-013-3170-y

Gabas, A. L., Telis-Romero, J., Giraldo-Gómez, G.I., & Telis, V. R. N. (2009). Propiedades termodinámicas de sorción de agua de la pulpa de lulo en polvo con encapsulantes. Food Science and Technology, 29(4), 911-918. https://doi.org/10.1590/s0101-20612009000400032

Gatto, M. A., Ippolito, A., Linsalata, V., Cascarano, N. A., Nigro, F., Vanadia, S., & Di-Venere, D. (2011). Activity of extracts from wild edible herbs against postharvest fungal diseases of fruit and vegetables. Postharvest Biology and Technology, 61(1), 72-82. Htps://doi:10.1016/j.postharvbio.2011.02.005

Gharsallaoui, A., Saurel, R., Chambin, O., & Voilley, A. (2012). Pea (Pisum sativum, L.) protein isolate stabilized emulsions: A novel system for microencapsulation of lipophilic ingredients by spray drying. Food and Bioprocess Technology, 5, 2211-2221. https://doi.org/10.1007/s11947-010-0497-z

González-Cruz, E., Andrade-Gonzales, I., Prieto, C., Cálderon-Santoyo, M., & Ragazzo-Sánchez, J. (2022). Nanoencapsulation of polyphenolic-rich extract from biloxi blueberries (Vaccinium corymbosum L.) by electrospraying using zein as encapsulating material. Biointerface Research in Applied Chemistry, 13(1), 78. https://doi.org/10.33263/BRIAC131.078

González-Gutiérrez, K. N., Ragazzo-Sánchez, J. A., Barros-Castillo, J. C., Narváez-Zapata, J. A., & Calderón-Santoyo, M. (2023). Yeasts with potential biocontrol of Colletotrichum gloeosporioides in avocado (Persea americana Mill. cv. Hass) and characterization of Yamadazyma mexicana mechanisms. European Journal of Plant Pathology, 165(3), 525-543. https://doi.org/10.1007/s10658-022-02625-4

González-Gutiérrez, K. N., Ragazzo-Sánchez, J. A., & Calderón-Santoyo, M. (2024). Bioformulation of Yamadazyma mexicana LPa14 by electrospraying process: Anthracnose control and effect on postharvest quality of avocado fruit. Biological Control, 190, 105449. https://doi.org/10.1016/j.biocontrol.2024.105449

Hacisalihoglu, G., Freeman, J., Armstrong, P. R., Seabourn, B. W., Porter, L. D., Settles, A. M., & Gustin, J. L. (2020). Protein, weight, and oil prediction by single-seed near-infrared spectroscopy for selection of seed quality and yield traits in pea (Pisum sativum). Journal of the Science of Food and Agriculture, 100(8), 3488-3497. https://doi.org/10.1002/jsfa.10389

Iñiguez-Moreno, M., Calderón-Santoyo, M., Barros-Castillo, J. C., Miss-Zacarías, D. M., Díaz, J. A., & Ragazzo-Sánchez, J. A. (2022). Nanofibers added with citral: Characterization and their application to postharvest control of Fusarium pseudocircinatum in bananas. Journal of Food Processing and Preservation, 46(12). https://doi.org/10.1111/jfpp.17188

Iñiguez-Moreno, M., Ragazzo-Sánchez, J. A., Barros-Castillo, J. C., Sandoval-Contreras, T., & Calderón-Santoyo, M. (2020). Sodium alginate coatings added with Meyerozyma caribbica: Postharvest biocontrol of Colletotrichum gloeosporioides in avocado (Persea americana Mill. cv. Hass). Postharvest Biology and Technology, 163, 111123. https://doi.org/10.1016/j.postharvbio.2020.111123

Ismail, B. P., Senaratne-Lenagala, L., Stube, A., & Brackenridge, A. (2020). Protein demand: Review of plant and animal proteins used in alternative protein product development and production. Animal Frontiers, 10(4), 53-63. https://doi.org/10.1093/af/vfaa040

Jiménez-Sánchez, D. E., Calderón-Santoyo, M., Ortiz-Basurto, R. I., Bautista-Rosales, P. U., & Ragazzo-Sánchez, J. A. (2018). Effect of maltodextrin reduction and native agave fructans addition on the physicochemical properties of spray-dried mango and pineapple juices. Food Science and Technology International, 24(6), 519-532. https://doi.org/10.1177/1082013218769168

Juárez-Trujillo, N., Monribot-Villanueva, J. L., Alvarado-Olivarez, M., Luna-Solano, G., Guerrero-Analco, J. A., & Jiménez-Fernández, M. (2018). Phenolic profile and antioxidative properties of pulp and seeds of Randia monantha Benth. Industrial Crops and Products, 124, 53-58. https://doi.org/10.1016/j.indcrop.2018.07.052

Karkanis, A., Ntatsi, G., Lepse, L., Fernández, J. A., Vågen, I. M., Rewald, B., Alsiņa, I., Kronberga, A., Balliu, A., Olle, M., Bodner, G., Dubova, L., Rosa, E., & Savvas, D. (2018). Faba bean cultivation – Revealing novel managing practices for more sustainable and competitive European cropping Systems. Frontiersin Plant Science, 9. https://doi.org/10.3389/fpls.2018.01115

Kumar, M., Tomar, M., Punia, S., Dhakane-Lad, J., Dhumal, S., Changan, S., Senapathy, M., Berwal, M. K., Sampathrajan, V., Sayed, A. A. S., Chandran, D., Pandiselvam, R., Rais, N., Mahato, D. K., Udikeri, S. S., Satankar, V., Anitha, T., Reetu, R., & Kennedy, J. F. (2022). Plant-based proteins and their multifaceted industrial applications. LWT- Food Science and Technology, 154, 112620. https://doi.org/10.1016/j.lwt.2021.112620

López-Cruz, R., Ragazzo-Sánchez, J. A., & Cal-derón-Santoyo, M. (2020). Microencapsulation of Meyerozyma guilliermondii by spray drying using sodium alginate and soy protein isolate as wall materials: A biocontrol formulation for anthracnose disease of mango. Biocontrol Science and Technology, 30(10), 1116-1132. https://doi.org/10.1080/09583157.2020.1793910

Mahdi-Jafari, S. (2017). An overview of nanoencapsulation techniques and their classification. In S. Mahdi-Jafari (Ed.), Nanoencapsulation technologies for the food and nutraceutical industries (pp. 1-34). Academic Press. https://doi.org/10.1016/B978-0-12-809436-5.00001-X

Malloum, A. & Conradie, J. (2023). Microsolvation of phenol in water: Structures, hydration free energy and enthalpy. Molecular Simulation, 49(4), 403-414. https://doi.org/10.1080/08927022.2022.2163674

Mariscal-Amaro, L. A., Villaseñor-Mir, H. E., Solís-Moya, E., Hortelano-Santa Rosa, R. y Martínez-Cruz, E. (2020). Efecto de fungicidas sobre caracteres agronómicos, rendimiento y tizones foliares en trigo de temporal en México. Revista Fitotecnia Mexicana, 43(1), 71. https://doi.org/10.35196/rfm.2020.1.71

Méndez-Ventura, L. y Hernández-Medel, M. (2009). Evaluación de la toxicidad del fruto de Randia monantha Benth. Revista Médica de la Universidad Veracruzana, 9(1), 41-45.

Mendoza-Corvis, F., Arteaga-Martinez, M. y Perez-Solis, O. (2016). Comportamiento de la vitamina c en un producto a base de lactosuero y pulpa de mango variedad magdalena river (Mangífera indica L.) durante el secado por aspersión. Revista Chilena de Nutrición, 43(2), 8. https://doi.org/10.4067/s0717-75182016000200008

Meng, Y. & Zhang, X. (2014). Nanostructure formation in Thermoset/Block copolymer and Thermoset/Hyperbranched polymer blends. In S. Thomas, R. Shanks & S. Chandrasekharakurup (Eds.), Nanostructured Polymer Blends (pp. 161-194). Elsevier, London.

Ojeda-Ayala, M., Gaxiola-Camacho, S. M., & Delgado-Vargas, F. (2022). Phytochemical composition and biological activities of the plants of the genus Randia. Botanical Sciences, 100(4), 779-796. https://doi.org/10.17129/botsci.3004

Oulahal, N. & Degraeve, P. (2022). Phenolic-rich plant extracts with antimicrobial Activity: An alternative to food preservatives and biocides? Frontiers in Microbiology, 12(1). https://doi.org/10.3389/fmicb.2021.753518

Pandit, M. A., Kumar, J., Gulati, S., Bhandari, N., Mehta, P., Katyal, R., Rawat, C. D., Mishra, V., & Kaur, J. (2022). Major biological control strategies for plant pathogens. Pathogens, 11(2), 273. https://doi.org/10.3390/pathogens11020273

Ramos-Hernández, J. A., Calderón-Santoyo, M., Prieto, C., Lagarón, J. M., Navarro-Ocaña, A., & Ragazzo-Sanchez, J. A. (2023). Encapsulation with HDPAF-WP of the hexane fraction of sea grape (Coccoloba uvifera L.) leaf extract by electrospraying. Polymer Bulletin, 80(1), 959-975. 10.1007/s00289-022-04088-3

Ramos-Hernández, J. A., Lagarón, J. M., Calderón-Santoyo, M., Prieto, C., & Ragazzo-Sánchez, J. A. (2021). Enhancing hygroscopic stability of agave fructans capsules obtained by electrospraying. Journal of Food Science and Technology, 58(4), 15931603. https://doi.org/10.1007/s13197-020-04672-3

Ramos, R., Bernard, J., Ganachaud, F., & Miserez, A. (2022). Protein-based encapsulation strategies: Toward micro- and nanoscale carriers with increased functionality. Small Science, 2(3). https://doi.org//smsc.202100095

Rodiño, P., Santalla, M., De-Ron M, A., & Drevon-Jacques, J. (2005). Variability in symbiotic nitrogen fixation among white landraces of common bean from the Iberian peninsula. Symbiosis, 2, 69-78.

Saldanha-do-Carmo, C., Knutsen, S. H., Malizia, G., Dessev, T., Geny, A., Zobel, H., Myhrer, K. S., Varela, P., & Sahlstrøm, S. (2021). Meat analogues from a faba bean concentrate can be generated by high moisture extrusion. Future Foods, 3, 100014. https://doi.org/10.1016/j.fufo.2021.100014

Sarabandi, K., Sadeghi-Mahoonak, A., Hamishekar, H., Ghorbani, M., & Jafari, S. M. (2018). Microencapsulation of casein hydrolysates: Physicochemical, antioxidant and microstructure properties. Journal of Food Engineering, 237, 86-95. https://doi.org/10.1016/j.jfoodeng.2018.05.036

Schumacher, H., Paulsen, H. M., Gau, A. E., Link, W., Jürgens, H. U., Sass, O., & Dieterich, R. (2011). Seed protein amino acid composition of important local grain legumes Lupinus angustifolius L., Lupinus luteus L., Pisum sativum L. and Vicia faba L. Plant Breeding, 130(2), 156-164. https://doi:10.1111/j.1439-0523.2010.01832.x

Selim, K. A., Alharthi, S. S., Abu El-Hassan, A. M., Elneairy, N. A., Rabee, L. A., & Abdel-Razek, A. G. (2021). The effect of wall material type on the encapsulation efficiency and oxidative stability of fish oils. Molecules, 26(20), 6-19. https://doi.org/10.3390/molecules26206109

Simonetti, G., Brasili, E., & Pasqua, G. (2020). Antifungal activity of phenolic and polyphenolic compounds from different matrices of Vitis vinifera L. against human pathogens. Molecules, 25(16), 37-48. https://doi.org/10.3390/molecules25163748

Stampfli, A. R. & Seebeck, F. P. (2020). The catalytic mechanism of sulfoxide synthases. Current Opinion in Chemical Biology, 59(1), 111-118. https://doi.org/10.1016/j.cbpa.2020.06.007

Suárez, H. M. y Brito, D. C. (2020). Eficiencia de encapsulacion y capacidad de carga de antocianinas de Vaccinium floribundim kunt en nanoparticulas de zeina. Infoanalítica, 8(1), 83-97. https://doi.org/10.26807/ia.v8i1.98

Ulfa, A. S., Emelda, E., Munir, M. A., & Sulistyani, N. (2023). Pengaruh metode ekstraksi maserasi dan sokletasi terhadap standardisasi parameter spesifik dan non spesifik ekstrak etanol biji pepaya (Carica papaya L.). Jurnal Insan Farmasi Indonesia, 6(1), 1-12. https://doi.org/10.36387/jifi.v6i1.1387

Vilchis-Gómez, D. S., Calderón-Santoyo, M., Barros-Castillo, J. C., Zamora-Gasga, V. M., & Ragazzo-Sánchez, J. A. (2024). Ultrasound assisted extraction of polyphenols from Randia monantha: Optimization, characterization and antifungal activity. Industrial Crops and Products, 209, 117932. https://doi.org/10.1016/j.indcrop.2023.117932

Wang, Y., Ghosh, S., & Nickerson, M. T. (2022). Microencapsulation of flaxseed oil by lentil protein isolate -k- carrageenan and -i- carrageenan based wall materials through spray and freeze drying. Molecules, 27, 3195. https://doi.org/10.3390/molecules27103195

Warsame, A. O., Michael, N., O’Sullivan, D. M., & Tosi, P. (2020). Identification and quantification of major faba bean seed proteins. Journal of Agricultural and Food Chemistry, 68(32), 8535-8544. https://doi.org/10.1021/acs.jafc.0c02927

Wu, Z., Wu, Y., Zakhvatayeva, A., Wang, X., Liu, Z., Yang, M., Zheng, Q., & Wu, C. Y. (2022). Influence of moisture content on die filling of pharmaceutical powders. Journal of Drug Delivery Science and Technology, 78, 103985. https://doi.org/10.1016/j.jddst.2022.103985

Yan, C., Kim, S. R., Ruiz, D. R., & Farmer, J. R. (2022). Microencapsulation for food applications: A review. ACS Applied Bio Materials, 5(12), 5497-5512. https://doi.org/10.1021/acsabm.2c00673

Zhu, J. & Huang, Q. (2019). Nanoencapsulation of functional food ingredients. In T. Mingquian (Ed.), Advances in Food and Nutrition Research (pp. 129-165). Elsevier. https://doi.org/10.1016/bs.afnr.2019.03.005

Żmudziński, D., Goik, U., & Ptaszek, P. (2021). Functional and rheological properties of Vicia faba L. protein isolates. Biomolecules, 11(2), 178. https://doi.org/10.3390/biom11020178

Publicado

2025-01-31

Cómo citar

Guillén-Jiménez, C. M., Calderón-Santoyo, M., González-Gutiérrez, K. N., & Ragazzo-Sánchez, J. A. (2025). Extracto de Randia monantha encapsulado con proteína de haba (Vicia faba): actividad antifúngica in vitro y caracterización fisicoquímica. CienciaUAT, 19(2), 140–155. https://doi.org/10.29059/cienciauat.v19i2.1933

Artículos similares

<< < 29 30 31 32 33 34 35 36 37 38 > >> 

También puede Iniciar una búsqueda de similitud avanzada para este artículo.