Use of medicinal plants as an alternative for the treatment of fasciolasis

Authors

  • Joseline Licona-Hernández Universidad Autónoma del Estado de Hidalgo, Instituto de Ciencias Agropecuarias, Área académica de Medicina Veterinaria y Zootecnia, rancho Universitario avenida Universidad km 1, Ex-Hacienda de Aquetzalpa, Tulancingo, Hidalgo, México, C. P. 43600. https://orcid.org/0009-0004-7581-3687
  • José Ignacio Olave-Leyva Universidad Autónoma del Estado de Hidalgo, Instituto de Ciencias Agropecuarias, Área académica de Medicina Veterinaria y Zootecnia, rancho Universitario avenida Universidad km 1, Ex-Hacienda de Aquetzalpa, Tulancingo, Hidalgo, México, C. P. 43600. https://orcid.org/0000-0002-4440-2138
  • Deyanira Ojeda-Ramírez Universidad Autónoma del Estado de Hidalgo, Instituto de Ciencias Agropecuarias, Área académica de Medicina Veterinaria y Zootecnia, rancho Universitario avenida Universidad km 1, Ex-Hacienda de Aquetzalpa, Tulancingo, Hidalgo, México, C. P. 43600. https://orcid.org/0000-0003-4649-2699

DOI:

https://doi.org/10.29059/cienciauat.v19i1.1846

Keywords:

Fasciola, medicinal plants, extracts, secondary metabolites

Abstract

Fascioliasis is a disease produced by parasitic flatworms of the class trematoda and genus Fasciola that affects animals and humans. Despite its considerable impact on public health and the livestock, as well as its frequent reappearance, it is among the neglected tropical diseases. Furthermore, the indiscriminate use of synthetic fasciolicides in livestock has led to resistance of this trematode to the anthelmintics available on the market. For that, it is necessary to have new treatment alternatives. The aim of this work was to analyze recent advances worldwide on medicinal plants with an effect on Fasciola, reported in PubMed, Scopus, SciFinder and Google Scholar databases, between January 2019 and July 2023. We found information of 32 fasciolicide plants: seven of them with activity on eggs, three on larval stages, one on juveniles, and the rest on the adult stage of the parasite. Among the secondary metabolites responsible for the pharmacological activity, monoterpenes, alkaloids, polyunsaturated fatty acids (PUFA’s), artemisin and phenolic compounds have been identified, highlighting curcumin and thymoquine. The findings reveal the potential use of plants as a source of new fasciolicidal active ingredients.

References

Abbas, R. Z., Zaman, M. A., Sindhu, Z. U. D., Sharif, M., Rafique, A., Saeed, Z., Rehman, T. U., Siddique, F., Zaheer, T., Khan, M. K., Akram, M. S., Chattha, A. J., Fatima, U., Munir, T., & Ahmad, M. (2020). Anthelmintic effects and toxicity analysis of herbal dewormer against the infection of Haemonchus contortus and Fasciola hepatica in goat. Pakistan Veterinary Journal, 40(4), 455-460. http://dx.doi.org/10.29261/pakvetj/2020.083

Abdel-Fatah, O. R., Arafa, W. M., Wahba, A. A., & El‑Dakhly, K. M. (2022). Tegumental alterations and resistance of Fasciola gigantica adult worms exposed to flukicides in Egypt. Beni-Suef University Journal of Basic and Applied Sciences, 11, 106. https://doi.org/10.1186/s43088-022-00287-z

Acevedo-Ramírez, P. M. D. C., Hallal-Calleros, C., Flores-Pérez, I., Alba-Hurtado, F., Mendoza-Garfías, M. B., Castro-Del-Campo, N., & Barajas, R. (2019). Anthelmintic effect and tissue alterations induced in vitro by hydrolysable tannins on the adult stage of the gastrointestinal nematode Haemonchus contortus. Veterinary Parasitology, 266, 1-6. https://doi.org/10.1016/j.vetpar.2018.12.008

Ahmed, H., Kilinc, S. G., Celik, F., Kesik, H. K., Simsek, S., Ahmad, K. S., Afzal, M. S., Farrakh, S., Safdar, W., Pervaiz, F., Sadia, L., S., Zhang, J., & Cao, J. (2023). An inventory of anthelmintic plants across the globe. Pathogens, 12, 131. https://doi.org/10.3390/pathogens12010131

Bonde, C. S., Bornancin, L., Lu, Y., Simonsen, H. T., Martínez-Valladares, M., Peña-Espinoza, M., Mejer, H., Williams, A. R., & Thamsborg, S. M. (2021). Bioguided fractionation and molecular networking reveal fatty acids to be principal anti-parasitic compounds in Nordic seaweeds. Frontiers in Pharmacology, 12, 674520. https://doi.org/10.3389/fphar.2021.674520

Bowman, D. D. (2014). Georgis´ Parasitology for Veterinarians. (Ninth edition). Elsevier. 77 Pp.

Brauner-de-Mello, A., Baccega, B., Obelar-Martins, F., Ignês-de-Santi, I., Islabão, Y. W., de-Giacometi, M., Pereira-Soares, M., da-Rosa-Farias, N. A., & Belmonte-Oliveira, C. (2023). Activity of cumin essential oil to control fascioliasis: Efficacy and changes in the tegument of Fasciola hepatica. Experimental parasitology, 252, 108587. https://doi.org/10.1016/j.exppara.2023.108587

Castro-Hermida, J. A., González-Warleta, M., Martínez-Sernández, V., Ubeira, F. M., & Mezo, M. (2021). Current challenges for Fasciolicide treatment in ruminant livestock. Trends in Parasitology, 37(5), 430-444. https://doi.org/10.1016/j.pt.2020.12.003

El-Shanawany, E. E., Fouad, E. A., Keshta, H. G., Hassan, S. E., Hegazi, A. G., & Abdel-Rahman, E. H. (2019). Immunomodulatory effects of Moringa oleifera leaves aqueous extract in sheep naturally coinfected with Fasciola gigantica and Clostridium novyi. Journal of Parasitic Diseases, 43, 583-591. https://doi:10.1007/s12639-019-01130-6

Encinas-García, R., Quiroz-Romero, H., Guerrero-Molina, C. y Ochoa-Galván, P. (2020). Frecuencia de fasciolasis hepática e impacto económico en bovinos sacrificados en Ferrería, México, D.F. Veterinaria México OA, 7(3), 928. https://doi.org/10.22201/fmvz.24486760e.2020.3.928

Ezeta-Miranda, A., Vera-Montenegro, Y., Avila-Acevedo, J. G., García-Bores, A. M., Estrella-Parra, E. A., Francisco-Marquez, G., & Ibarra-Velarde, F. (2020). Efficacy of purified fractions of Artemisia ludoviciana Nutt. mexicana and ultraestructural damage to newly excysted juveniles of Fasciola hepatica in vitro. Veterinary Parasitology, 285, 109184. https://10.1016/j.vetpar.2020.109184

Faixová, D., Hrčková, G., Kubašková, T. M., & Mudroňová, D. (2021). Antiparasitic effects of selected isoflavones on flatworms. Helminthologia, 58, 1-16. https://doi.org/10.2478/helm-2021-0004

Gamulo, J. V., Bolina, M. P., Brion, J. S., Rosa, V. C. N. D., Maglaya, R. F., Tan, C. L., & Chang, A. C. (2022). Fascioliasis phytotherapy using tropical plant extracts: a systematic review with meta-analysis. The Journal of Advances in Parasitology, 9(1), 12-28. http://dx.doi.org/10.17582/journal.jap/2022/9.1.12.28

González-Garduño, R., Hernández-Hernández, J. D. C., Torres-Hernández, G. y Ortiz-Pérez, D. O. (2019). Comportamiento hematológico de bovinos infectados por trematodos en un clima cálido húmedo de México. Pastos y Forrajes, 42(3), 197-201.

Ibekwe, H. A. (2019). In vitro anthelmintic activities of aqueous crude extract of Azadirachta indica on Paramphistomum cervi and Fasciola hepatica. International Journal of Veterinary Sciences and Animal Husbandry, 4(1), 14-18.

Kumar, P. (2020). Helminth control: In vitro anthelmintic and larvicidal activities of Solanum surattense against Fasciola gigantica (Sporocyst, Redia, and Cercaria) larvae. International Journal of Medical Parasitology and Epidemiology Sciences, 1(4), 85-90. https://doi.org/10.34172/ijmpes.2020.24

Kapadia, P., Newell, A. S., Cunningham, J., Roberts, M. R., & Hardy, J. G. (2022). Extraction of highvalue chemicals from plants for technical and medical applications. International Journal of Molecular Sciences, 23(18), 10334. https://doi.org/10.3390/ijms231810334

Kumar, P. (2021). Medicinal plant Potentilla fulgens and its effect in vitro against Fasciola gigantica. Insights Clin Cell Immunology, 5, 4-7. https://doi.org/10.29328/journal.icci.1001018

Lam, N. S., Long, X., Su, X. Z., & Lu, F. (2020). Melaleuca alternifolia (tea tree) oil and its monoterpene constituents in treating protozoan and helminthic infections. Biomedicine & Pharmacotherapy, 130, 110624. https://doi.org/10.1016/j.biopha.2020.110624

Lalor, R., Cwiklinski, K., Calvani, N. E. D., Dorey, A., Hamon, S., Corrales, J. L., Dalton, J. P., & De-Marco Verissimo, C. (2021). Pathogenicity and virulence of the liver flukes Fasciola hepatica and Fasciola gigantica that cause the zoonosis Fasciolosis. Virulence, 12(1), 2839-2867. https://doi.org/10.1080/21505594.2021.1996520

López-Villacís, I. C., Artieda-Rojas, J. R., Mera-Andrade, R. I., Muñoz-Espinoza, M. S., Rivera-Guerra, V. E., Cuadrado-Guevara, A. C., Zurita-Vásquez, J. H. y Montero-Recalde, M. A. (2017). Fasciola hepatica: aspectos relevantes en la salud animal. Journal of the Selva Andina Animal Science. 4(2), 137-146.

Machado-Pereira-Da-Silva, M. A., Zehetmeyr, F. K., Pereira, K. M., Pacheco, B. S., Freitag, R. A., Pinto, N. B., Machado, R. H., Villarreal-Villarreal, J. P., de-Oliveira-Hubner, S., Aires-Berne, M. E., & da-Silva-Nascente, P. (2020). Ovicidal in vitro activity of the fixed oil of Helianthus annus L. and the essential oil of Cuminum cyminum L. against Fasciola hepatica (Linnaeus, 1758). Experimental Parasitology, 218, 107984. https://doi.org/10.1016/j.exppara.2020.107984

Marques, L. T., Guedes, R. A., Rodrigues, W. D., Archanjo, A. B., Severi, J. A., & Martins, I. V. F. (2020). Chemical composition of various plant extracts and their in vitro efficacy in control of Fasciola hepatica eggs. Ciência Rural, 50(5), e20190363. https://doi.org/10.1590/0103-8478cr20190363

Mas-Coma, S., Valero, M. A., & Bargues, M. D. (2019). Fascioliasis. Advances in Experimental Medicine and Biology, 1154, 71-103. https://doi.org/10.1007/978-3-030-18616-6_4

Morais, M. C., Souza, J. V., da-Silva-Maia-Bezerra-Filho, C., Dolabella, S. S., & Sousa, D. P. (2020). Trypanocidal essential oils: A review. Molecules, 25(19), 4568. https://doi.org/10.3390/molecules25194568

Okeke, I. J., Oyeyemi, O. T., & Morenikeji, O. A. (2022). Ovicidal and miracicidal activities of Calotropis procera and its green-synthesized nanotized derivative: A quest for new antifasciola agents. Acta tropica, 236, 106700. https://doi.org/10.1016/j.actatropica.2022.106700

Opio, L. G., Abdel‑Fatah, E. M., Terry, J., Odongo, S., & Okello, E. (2021). Prevalence of Fascioliasis and associated economic losses in cattle slaughtered at Lira municipality Abattoir in Northern Uganda. Animals (Basel), 11, 681. https://doi.org/10.3390/ani11030681

Pinilla, J. C., Florez-Muñoz, A. A., & Uribe-Delgado, N. (2020). Prevalence and risk factors associated with liver fluke Fasciola hepatica in cattle and sheep in three municipalities in the Colombian Northeastern Mountains. Veterinary Parasitology: Regional Studies and Reports, 19, 100364. https://doi.org/10.1016/j.vprsr.2019.100364

Rehman, A., Ullah, R., Gupta, D., Khan, M. A. H., Rehman, L., Beg, M. A., Khan, A. U., & Abidi, S. M. A. (2020). Generation of oxidative stress and induction of apoptotic like events in curcumin and thymoquinone treated adult Fasciola gigantica worms. Experimental Parasitology. 209, 107810. https://doi.org/10.1016/j.exppara.2019.107810

Rodríguez-Vivas, R. I., Grisi, L., Pérez-de-León, A. A., Silva-Villela, H., Torres-Acosta, J. F. D. J., Fragoso-Sánchez, H., Romero-Salas, D., Rosario-Cruz, R., Saldierna, F., & García-Carrasco, D. (2017). Potential economic impact assessment for cattle parasites in Mexico. Review. Revista Mexicana de Ciencias Pecuarias, 8, 61-74. https://doi.org/10.22319/rmcp.v8i1.4305

Sen, H., Raj-Narayan-Damor, R. D., & Swarnakar, G. (2022). In-vitro anthelmintic effects of medicinal plant Cassia fistula extract on the tegument of Fasciola gigantica by light microscope. International Journal of Pharmaceutical Sciences and Research (IJPSR), 12, 6736-6743. https://doi.org/10.13040/IJPSR.0975-8232.12(12).6736-43

Ssenkuba, F., Komujuni, C., & Tumusiime, J. (2022). In vitro anthelmintic activity of Leonotis nepetifolia ethanolic and aqueous leaf extracts on Fasciola gigantica. Journal of Veterinary Medicine and Animal Health, 14(4), 82-90. https://doi.org/10.5897/JVMAH2022.1011

Štrbac, F., Krnjajić, S., Stojanović, D., Novakov, N., Bosco, A., Simin, N., Ratajac, R., Stanković, S., Cringoli, G., & Rinaldi, L. (2023). Botanical control of parasites in veterinary medicine. One Health Triad, 3(31), 215-222. https://doi.org/10.47278/book.oht/2023.98

Ullah, R., Rehman, A., Zafeer, M. F., Rehman, L., Khan, Y. A., Khan, M. A., Khan, S. N., Khan, A. U., & Abidi, S. M. (2017). Anthelmintic potential of Thymoquinone and Curcumin on Fasciola gigantica. PLoS One, 12, e0171267. https://doi.org/10.1371/journal.pone.0171267

Vale, N., Gouveia, M. J., Gärtner, F., & Brindley, P. J. (2020). Oxysterols of helminth parasites and pathogenesis of foodborne hepatic trematodiasis caused by Opisthorchis and Fasciola species. Parasitology Research, 119, 1443-1453. https://doi.org/10.1007/s00436-020-06640-4

Vishwakarma, K. & Kumar, P. (2021). In vivo anthelmintic activity of medicinal plant Asparagus racemosus against larva of Fasciola gigantica. Research Journal of Agricultural Sciences, 12(2), 675-680.

Wulandari, A. R., Nurlaelasari, A., Nugroho, H. A., Cahyadi, M., Kurniawan, W., & Hamid, P. H. (2023). Ethanolic extract of Etlingera elatior flower exhibits anthelmintic properties to Fasciola gigantica in vitro. Open Veterinary Journal, 13(5), 576–587. https://doi.org/10.5455/OVJ.2023.v13.i5.10

Yamson, E. C., Tubalinal, G. A. S., Viloria, V. V., & Mingala, C. N. (2019). Anthelmintic effect of betel nut (Areca catechu) and neem (Azadirachta indica) extract against liver fluke (Fasciola spp.). Journal of Advanced Veterinary Research, 6, 44-49. https://doi.org/10.5455/javar.2019.e310

Published

2024-03-22

How to Cite

Licona-Hernández, J., Olave-Leyva, J. I., & Ojeda-Ramírez, D. (2024). Use of medicinal plants as an alternative for the treatment of fasciolasis. CienciaUAT, 19(1), 61–73. https://doi.org/10.29059/cienciauat.v19i1.1846

Issue

Section

Biology and Chemistry

Similar Articles

<< < 4 5 6 7 

You may also start an advanced similarity search for this article.