Influencia del origen del inóculo sobre la producción de biohidrógeno

Autores/as

  • Pedro Vera-Toledo Universidad de Ciencias y Artes de Chiapas. Facultad de Ingeniería, Escuela de Ingeniería Ambiental, libramiento Norte-Poniente 1150, colonia Caleras Maciel, Tuxtla Gutérrez, Chiapas, México, C.P. 29000.
  • Iván Moreno-Andrade Universidad Nacional Autónoma de México. Laboratorio de Investigación en Procesos Avanzados de Tratamiento de Aguas del Instituto de Ingeniería, Blvd. Juriquilla núm. 3001, Juriquilla, Querétaro, México, C.P. 76230.
  • Carlos M. García-Lara Universidad de Ciencias y Artes de Chiapas. Facultad de Ingeniería, Escuela de Ingeniería Ambiental, libramiento Norte-Poniente 1150, colonia Caleras Maciel, Tuxtla Gutérrez, Chiapas, México, C.P. 29000.

DOI:

https://doi.org/10.29059/cienciauat.v10i2.651

Palabras clave:

biohidrógeno, inóculo, pretratamiento.

Resumen

El biohidrógeno se considera el más prometedor de los biocombustibles por generar solo agua como residuo de su combustión. En este trabajo se compararon dos inóculos para la producción de biohidrógeno; el primero proveniente de la planta de tratamiento de una industria cervecera (Inóculo A) y el segundo de una planta de tratamiento de aguas residuales domésticas (Inóculo B). En ambos casos, para la selección de microorganismos productores de biohidrógeno se empleó un pretratamiento, consistente en choque térmico por 24 h a 104 °C de temperatura, seguido de una trituración hasta alcanzar la consistencia de polvo. La producción de biohidrógeno acumulado se ajustó al modelo de Gompertz, demostrando que a pesar de que se operó con un sustrato consistente de solución de glucosa al 5 %, enriquecido con medio mineral, agitación 15.71 rad/s y temperatura de 35 ºC, el tiempo de latencia y la productividad fueron distintos. Los reactores del Inóculo A generaron un acumulado de 128.27 mL de biohidrógeno, 12 veces mayor que los del Inóculo B (9.11 mL), con productividades de 85.52 mL y 6.07 mL de H2/Lreactor/d respectivamente, lo que se atribuye a las cantidades de microorganismos presentes en los inóculos comparados. La concentración del biohidrógeno varió desde 0 % hasta 72.42 % para el Inóculo A y de 0 % a unos 29.49 % para el Inóculo B. El Inóculo A mostró alto potencial para la producción de biohidrógeno.

 

Archivo XML (SciELO)

Biografía del autor/a

Pedro Vera-Toledo, Universidad de Ciencias y Artes de Chiapas. Facultad de Ingeniería, Escuela de Ingeniería Ambiental, libramiento Norte-Poniente 1150, colonia Caleras Maciel, Tuxtla Gutérrez, Chiapas, México, C.P. 29000.

Profesor

Citas

Abreu, A. A., Karakashev, D., Angelidaki, I., Sousa, D. Z., and Alves, M. M. (2012). Biohydrogen production from arabinose and glucose using extreme thermophilic anaerobic mixed cultures. Biotechnology for Biofuels. 5(6): 1-12.

Alsaker, K. V. and Papoutsakis, E. T. (2005). Transcriptional program of early sporulation and stationary-phase events in Clostridium acetobutylicum. Journal of Bacteriology. 187(20): 7103–7118.

APHA, American Public Health Association (2005). Standard Methods for the Examination of Water and Was tewater (Twenty edition), APHA. Baltimore: Port city press. 216–220 Pp.

Antonopoulou, G., Hariklia, N. G., Ioannis, V. S. K., Angelopoulos, G. L., and Lyberatos, G. (2008). Biofuels generation from sweet sorghum: Fermentative hydrogen production and anaerobic digestion of the remaining biomass. Bioresource Technology. 99(1): 110–119.

Beckers, L., Hiligsmann, S., Hamilton, C., Masset, J., and Thonart, P. (2010). Fermentative hydrogen production by Clostridium butyricum CWBI1009 and Citrobacter freundii CWBI952 in pure and mixed cultures. Biotechnologie, Agronomie, Société et Environnemen. 14(2): 541-548.

Buitrón, G. and Carvajal C. (2010). Biohydrogen production from Tequila vinasses in an anaerobic sequencing batch reactor: Effect of initial substrate concentration, temperature and hydraulic retention time. Bioresource Technology. 23(101): 9071–9077.

Chang, J. J., Chen, W. E., Shih, S. Y., Yu, S. J., Lay, J. J., Wen, F. S., and Huang, C. C. (2006). Molecular detection of the clostridia in an anaerobic biohydrogen fermentation system by hydrogenase mRNA-targeted reverse transcription-PCR. Applied Microbial and Cell Physiology. 70(5): 598–604.

Chinellato, G., Cavinato, C., Bolzonella, D., Heaven, S., and Banks, C. J. (2013). Biohydrogen production from food waste in batch and semi-continuous conditions: Evaluation of a two-phase approach with digestate recirculation for pH control.International Journal of Hydrogen Energy. 38(11): 4351-4360.

Chenlin, L. and Fang H. H. P. (2007). Fermentative hydrogen production from wastewater and solid wastes by mixed cultures. Critical Reviews in Environmental Science and Technology. 37(1): 1–39.

Cisneros-Pérez, C., Carrillo-Reyes, J., Celis, L. B., Alatriste-Mondragón, F., Etchebehere, C., and Razo-Flores, E. (2015).

Inoculum pretreatment promotes differences in hydrogen production performance in EGSB reactors. International Journal of Hydrogen Energy. 40(19): 6329–6339.

Elbeshbishy, E., Hafez, H., and Nakhla, G. (2011a). Viability of ultrasonication of food waste for hydrogen production. International Journal of Hydrogen Energy. 37(3): 2960–2964.

Elbeshbishy, E., Hafez, H., Ranjan-Dhar, B., and Nakhla, G. (2011b). Single and combined effect of various pretreatment methods for biohydrogen production from food waste. International Journal of Hydrogen Energy. 36(17): 11379–11387.

Faloye, F. D., Gueguim-Kana, E. B., and Schmidt, S. (2014). Optimization of biohydrogen inoculum development via a hybrid pH and microwave treatment technique-Semi pilot scale production assessment. International Journal of Hydrogen Energy. 39(11): 5607-5616.

Fan, Y. T., Zhang, Y. H., Zhang, S. F., Hou, H. W., and Ren, B. Z. (2006). Efficient Conversion of wheat straw wastes into biohydrogen gas by cow dung compost, Bioresource Technology. 97(3): 500-505.

Gadhe, A., Sonawane, S. S., and Varma, M. N. (2013). Optimization of conditions for hydrogen production from complex dairy wastewater by anaerobic sludge using desirability function approach. International Journal of Hydrogen Energy. 38(16): 6607–6617.

Guo, L., Li, X. M., Bo, X., Yang, Q., Zeng, G. M., Liao, D. X., and Liu, J. J. (2008). Impacts of sterilization, microwave and ultrasonication pretreatment on hydrogen producing using waste sludge. Bioresource Technology. 99(9): 3651-3658.

Han, S. K. and Shin, H. S. (2004). Biohydrogen production by anaerobic fermentation of food waste. International journal of hydrogen energy. 29(6): 569–577.

Hill, J., Nelson, E., Tilman, D., Polasky, S., and Tiffany, D. (2006). Environmental, economic, and energetic costs and benefits of biodiesel and ethanol biofuels. Proceedings of the National Academy of Sciences of the United States of America. 103(30): 11206-11210.

Karapinar, I. and Karg, F. (2006). Biohydrogen production from waste materials. Enzyme and microbial technology. 38(5): 569-582.

Levin, D. B., Pittb, L., and Loveb, M. (2004). Biohydrogen production: prospects and limitations to practical application. International Journal of Hydrogen Energy. 2(29): 173–185.

Logan, B. E. (2004). Peer reviewed: extracting hydrogen and electricity from renewable resources. Environmental Science and Technology. 38(9): 160A-167A.

Martínez, C. A., Rodríguez, A. P., Jiménez, A. y Manrique, C.(2010). Descripción matemática de la función Gompertz aplicada al crecimiento de animales. Reflexión, Revista Médica Veterinaria Zootecnista. 57: 76-80.

Masset, J., Calusinska, M., Hamilton, C., Hiligsmann, S., Joris, B., Wilmotte, A., and Thonart, P. (2012). Fermentative hydrogen production from glucose and starch using pure strains and artificial co-cultures of Clostridium spp. Biotechnology for Biofuels. 5(1): 20-35.

McCarty, P. L. and Parkin, G. F. (2001). Química para ingeniería ambiental (Cuarta edición). Colombia: McGraw-Hill. 713 Pp.

Mizuno, O., Dinsdale, R., Hawkes, F. R., Hawkes, D. L., and Noike, T. (2000). Enhacement of hydrogen production from glucose by nitrogen gas sparging. Bioresource Technology. 73(1): 59-65.

Nagaiah, D., Srinivasa-Rao, P., Prakasham, R. S., Uma, A., Radhika, K., Yoganand, B., and Umakanth, A. V. (2012). High Biomass Sorghum as a Potential Raw Material for Biohydrogen Production: A Preliminary Evaluation. Current Trends in Biotechnology and Pharmacy. 6(2):183-189.

Ren, N. Q., Guo, W. Q., Wang, X. J., Xiang, W. S., Liu, B. F., Wang, X. Z., …, and Chen, Z. B. (2008). Effects of different pretreatment methods on fermentation types and dominant bacteria for hydrogen production. International Journal of Hydrogen Energy. 16(33): 4318–4324.

Oh, S. E., Van, G. S., and Logan, B. E. (2003). The relative effectiveness of pH control and heat treatment for enhancing biohydrogen gas production. Environmental Science and Technology. 37(22): 5168-5190.

Valdez-Vazquez, I. and Poggi-Varaldo, H. M. (2009). Hydrogen production by fermentative consortia. Renewable and Sustainable Energy Reviews. 13(5): 1000-1013.

Vipin, C. K. and Hemant, J. P. (2008). Microbial diversity and genomics in aid of bioenergy. Journal of Industrial Microbiology and Biotechnology. 5(35): 403-419.

Wang, J. and Wan, W. (2008). Effect of temperature on fermentative hydrogen production by mixed cultures. International Journal of Hydrogen Energy. 33(20): 5392–5397.

Wei, H., Zhanqing, W., Hong, C., Xin, Y., and Yong, F. L. (2011). Simultaneous Biohydrogen and Bioethanol Production from Anaerobic Fermentation with Immobilized Sludge. Journal of Biomedicine and Biotechnology. 2011: 1-5.

Werner, J. J., Knights, D., Garcia, M. L., Scalfone, N. B., Smith, S., Yarasheski, K., …, and Angenent, L. T. (2011). Bacterial community structures are unique and resilient in full-scale bioenergy systems. Proceedings of the National Academy of Sciences USA. 108(10): 4158– 4163.

Wittebolle, L., Marzorati, M., Clement, L., Balloi, A., Daffonchio, D., Heylen, K., …, and Boon, N. (2009). Initial community evenness favours functionality under selective stress. Nature. 458(7238): 623–626.

Xing, Y., Fan, Y. T., and Hou, H. W. (2010). Production of Cellulose-Hydrogen from Corn Stalk based on Acid-enzyme Two-Stage Pretreatment by Mixed Culture. The 6th International Symposium on Multiphase Heat Mass Trasfer and Energy Conversion. American Institute of Physics. 1207(1): 1045-1048.

Yen-Hui, L., Mu-Ling, J., and Hsin-Jung, H. (2011). Effects of temperature and initial pH on biohydrogen production from food-processing wastewater using anaerobic mixed cultures. Biodegradation. 22(3): 551-563.

Yogananda, M., Yan, Z., Chenghong, G., Keke, X., and Wun, J. N. (2015). The effect of pH on solubilization of organic matter and microbial community structures in sludge fermentation. Bioresource Technology. 10(190): 289–298.

Yokoyama, H., Waki, M., Ogino, A., Ohmori, H., and Tanaka, Y. (2007). Hydrogen Fermentation properties of undiluted cow dung. Journal of Biosciencie and Bioengineering. 104(1): 82-85.

Zahedi, S., Sales, D., Solera, R. y Romero, L. I. (2011). Enriquecimiento de inóculo anaerobios en eubacterias productoras de hidrógeno. Residuos. (123): 42-47.

Zhao, M. X., Yan, Q., Ruan, W. Q., Miao, H. F., Ren, H. Y., and Xu, Y. (2012). A Comparative Study of Sequential Hydrogen-methane and Independent Methane Production from Kitchen Wastes. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects. 34(11): 1046-1054.

Zhu, H. and Béland, M. (2006). Evaluation of alternative methods of preparing hydrogen producing seeds from digested wastewater sludge. International Journal of Hydrogen Energy. 14(31): 1980–1988.

Publicado

2016-02-29

Cómo citar

Vera-Toledo, P., Moreno-Andrade, I., & García-Lara, C. M. (2016). Influencia del origen del inóculo sobre la producción de biohidrógeno. CienciaUAT, 10(2), 63-71. https://doi.org/10.29059/cienciauat.v10i2.651

Número

Sección

Biotecnología y Ciencias Agropecuarias