Microcápsulas y microesferas: una visión a la caracterización integral y aplicación para la liberación de medicamentos biotecnológicos

Autores/as

  • Elvia Zárate-Hernández Universidad Autónoma de San Luis Potosí, Facultad de Ciencias Químicas, Laboratorio de Farmacología, Avenida Dr. Manuel Nava núm. 6, Zona Universitaria, San Luis Potosí, San Luis Potosí, México, C. P. 78210.
  • Rosa Alejandra Hernández-Esquivel Universidad Autónoma de San Luis Potosí, Facultad de Ciencias Químicas, Laboratorio de Farmacología, Avenida Dr. Manuel Nava núm. 6, Zona Universitaria, San Luis Potosí, San Luis Potosí, México, C. P. 78210.
  • José Trinidad Pérez-Urizar Universidad Autónoma de San Luis Potosí, Facultad de Ciencias Químicas, Laboratorio de Farmacología, Avenida Dr. Manuel Nava núm. 6, Zona Universitaria, San Luis Potosí, San Luis Potosí, México, C. P. 78210.

DOI:

https://doi.org/10.29059/cienciauat.v15i2.1472

Palabras clave:

medicamento biotecnológico, microesferas, estabilidad proteica

Resumen

Los microacarreadores basados en microcápsulas y microesferas han sido ampliamente estudiados y ensayados para controlar la liberación de medicamentos biotecnológicos (MB), disminuyendo la dosificación o modificando la vía de administración. Los métodos para la obtención de microacarreadores, son complejos y variados, por lo que es necesario determinar los requisitos mínimos que debe cumplir el sistema. El objetivo de este trabajo fue establecer las principales características que deben ser evaluadas en los microacarreadores para garantizar que la actividad biológica de los medicamentos biotecnológicos permanezca intacta a través del proceso de microencapsulación y, por lo tanto, que la seguridad del MB (desarrollo de reacciones inmunes) se mantenga inalterada. Las características a evaluar de un microacarreador deben describir las propiedades del material, tamaño y forma del sistema, carga de la partícula, funcionalidad, eficiencia de la microencapsulación y la cinética de liberación. Mientras que la integridad de los MB puede ser evaluada a partir de parámetros críticos de calidad: estructura y función biológica del MB, pureza del producto, presencia de agregados de alto peso molecular, estructura de orden superior y ensayos de actividad biológica. La caracterización de los microacarreadores debe enfocarse en la seguridad del biopolímero y proteínas ensayadas.

Citas

Abdelhakim, H. E., Coupe, A., Tuleu, C., Edirisinghe, M., and Craig, D. Q. M. (2019). Electrospinning optimization of eudragit E PO with and without chlorpheniramine maleate using a design of experiment approach. Molecular Pharmaceutics. 16(6): 2557-2568.

Agrawal, G. R., Wakte, P., and Shelke, S. (2017). Formulation, physicochemical characterization and in vitro evaluation of human insulin-loaded microspheres as potential oral carrier. Progress in Biomaterials. 6(3): 125-136.

Agyei, D., Ahmed, I., Akram, Z., Iqbal, H. M., and Danquah, M. K. (2017). Protein and peptide biopharmaceuticals: An overview. Protein and Peptide Lettters. 24(2): 94-101.

Alqahtani, M. S., Syed, R., and Alshehri, M. (2020). Size-dependent phagocytic uptake and immunogenicity of gliadin nanoparticles. Polymers. 12(11): 2576.

Andhariya, J. V. and Burgess, D. J. (2016). Recent advances in testing of microsphere drug delivery systems. Expert Opinion on Drug Delivery. 13(4): 593-608.

Andorko, J. I., Pineault, K. G., and Jewell, C. M. (2017). Impact of molecular weight on the intrinsic immunogenic activity of poly (beta amino esters). Journal of Biomedical Materials Research. Part A. 105(4): 1219-1229.

Bale, S., Khurana, A., Reddy, A. S., Singh, M., and Godugu, C. (2016). Overview on therapeutic applications of microparticulate drug delivery systems. Critical Reviews in Therapeutic Drug Carrier Systems. 33(4): 309-361.

Benne, N., van-Duijn, J., Kuiper, J., Jiskoot, W., and Slütter, B. (2016). Orchestrating immune responses: How size, shape and rigidity affect the immunogenicity of particulate vaccines. Journal of Controlled Release. 234: 124-134.

Berger, E., Breznan, D., Stals, S., Jasinghe, V. J., Gonçalves, D., Girard, D., ..., and Lavigne, C. (2017). Cytotoxicity assessment, inflammatory properties, and cellular uptake of Neutraplex lipid-based nanoparticles in THP-1 monocyte-derived macrophages. Nanobiomedicine. 4: 1-14.

Bhakta, S., Seraji, M. S., Suib, S. L., and Rusling, J. F. (2015). Antibody-like biorecognition sites for proteins from surface imprinting on nanoparticles. ACS Applied Materials & Interfaces. 7(51): 28197-28206.

Bhawani, S. A., Husaini, A., Ahmad, F. B., and Asaruddin, M. R. (2018). Polymer based protein therapeutics. Current Protein and Peptide Science. 19(10): 972-982.

Bilati, U., Allemann, E., and Doelker, E. (2005). Strategic approaches for overcoming peptide and protein instability within biodegradable nano-and microparticles. European Journal of Pharmaceutics and Biopharmaceutics. 59(3): 375-388.

Bittner, B., Morlock, M., Koll, H., Winter, G., and Kissel, T. (1998). Recombinant human erythropoietin (rhEPO) loaded poly (lactide-co-glycolide) microspheres: influence of the encapsulation technique and polymer purity on microsphere characteristics. European Journal of Pharmaceutics and Biopharmaceutics. 45(3): 295-305.

Bowey, K., Swift, B. E., Flynn, L. E., and Neufeld, R. J. (2013). Characterization of biologically active insulin-loaded alginate microparticles prepared by spray drying. Drug Development and Industrial Pharmacy. 39(3): 457-465.

Bracho-Sanchez, E., Xia, C. Q., Clare-Salzler, M. J., and Keselowsky, B. G. (2016). Micro and nano material carriers for immunomodulation. American Journal of Transplantation. 16(12): 3362-3370.

Bronze-Uhle, E. S., Costa, B. C., Ximenes, V. F., and Lisboa-Filho, P. N. (2017). Synthetic nanoparticles of bovine serum albumin with entrapped salicylic acid. Nanotechnology Science and Applications. 10: 11-21.

Bruno, B. J., Miller, G. D., and Lim, C. S. (2013). Basics and recent advances in peptide and protein drug delivery. Therapeutic Delivery. 4(11): 1443-1467.

Butreddy, A., Janga, K. Y., Ajjarapu, S., Sarabu, S., and Dudhipala, N. (2020). Instability of therapeutic proteins - An overview of stresses, stabilization mechanisms and analytical techniques involved in lyophilized proteins. International Journal of Biological Macromolecules. 167: 309-325.

Calasans-Maia, M. D., Barboza-Junior, C., Soriano-Souza, C. A., Alves, A., Uzeda, M., Martinez-Zelaya, and Rossi, A. M. (2019). Microspheres of alginate encapsulated minocycline-loaded nanocrystalline carbonated hydroxyapatite: therapeutic potential and effects on bone regeneration. International Journal of Nanomedicine. 14: 4559-4571.

Charão, M. F., Goethel, G., Brucker, N., Paese, K., Eifler-Lima, V. L., Pohlmann, A. R., and Garcia, S. C. (2019). Melatonin-loaded lipid-core nanocapsules protect against lipid peroxidation caused by paraquat through increased SOD expression in Caenorhabditis elegans. BMC Pharmacology & Toxicology. 20(1): 1-7.

Chen, K. Y. and Zeng, S. Y. (2017). Preparation and characterization of quaternized chitosan coated alginate microspheres for blue dextran delivery. Polymers. 9(6): 210.

Chogale, M. M., Ghodake, V. N., and Patravale, V. B. (2016). Performance parameters and characterizations of nanocrystals: A brief review. Pharmaceutics. 8(3).

Coelho, J., Eusebio, D., Gomes, D., Frias, F., Passarinha, L. A., and Sousa, A. (2019). Biosynthesis and isolation of gellan polysaccharide to formulate microspheres for protein capture. Carbohydrate Polymers. 220: 236-246.

Coelho, J. F., Ferreira, P. C., Alves, P., Cordeiro, R., Fonseca, A. C., Gois, J. R., and Gil, M. H. (2010). Drug delivery systems: Advanced technologies potentially applicable in personalized treatments. EPMA Journal. 1(1): 164-209.

Correa-Paz, C., Navarro-Poupard, M. F., Polo, E., Rodríguez-Pérez, M., Taboada, P., Iglesias-Rey, R., and Pelaz, B. (2019). In vivo ultrasound-activated delivery of recombinant tissue plasminogen activator from the cavity of sub-micrometric capsules. Journal of Controlled Release. 308: 162-171.

Costantino, H. R., Firouzabadian, L., Hogeland, K., Wu, C., Beganski, C., Carrasquillo, K., and Tracy, M. A. (2000). Protein spray-freeze drying. Effect of atomization conditions on particle size and stability. Pharmaceutical Research. 17(11): 1374-1383.

Diwan, M. and Park, T. G. (2003). Stabilization of recombinant interferon-alpha by pegylation for encapsulation in PLGA microspheres. International Journal of Pharmaceutics. 252(1-2): 111-122.

Erten-Taysi, A., Cevher, E., Sessevmez, M., Olgac, V., Mert-Taysi, N., and Atalay, B. (2019). The efficacy of sustained-release chitosan microspheres containing recombinant human parathyroid hormone on MRONJ. Brazilian Oral Research. 33: e086.

Ghasemi, R., Abdollahi, M., Emamgholi-Zadeh, E., Khodabakhshi, K., Badeli, A., Bagheri, H., and Hosseinkhani, S. (2019). mPEG-PLA and PLA-PEG-PLA nanoparticles as new carriers for delivery of recombinant human Growth Hormone (rhGH). Scientific Reports. 8(1): 9854.

Gill, P., Moghadam, T. T., and Ranjbar, B. (2010). Differential scanning calorimetry techniques: applications in biology and nanoscience. Journal Biomolecular Techniques. 21(4): 167-193.

Gravastrand, C., Hamad, S., Fure, H., Steinkjer, B., Ryan, L., Oberholzer, J., and Rokstad, A. M. (2017). Alginate microbeads are coagulation compatible, while alginate microcapsules activate coagulation secondary to complement or directly through FXII. Acta Biomaterialia. 58: 158-167.

Hahn, S. K., Kim, S. J., Kim, M. J., and Kim, D. H. (2004). Characterization and in vivo study of sustained-release formulation of human growth hormone using sodium hyaluronate. Pharmaceutical Research. 21(8): 1374-1381.

Han, P., Zhou, X., and You, C. (2020). Efficient multi-enzymes immobilized on porous microspheres for producing inositol from starch. Frontiers in Bioengineering and Biotechnology. 8: 380.

Horák, D., Hlídková, H., Kit, Y., Antonyuk, V., Myronovsky, S., and Stoika, R. (2017). Magnetic poly (2-hydroxyethyl methacrylate) microspheres for affinity purification of monospecific anti-p46 kDa/Myo1C antibodies for early diagnosis of multiple sclerosis patients. Bioscience Reports. 37(2).

Hu, M., Guo, J., Yu, Y., Cao, L., and Xu, Y. (2017). Research advances of microencapsulation and its prospects in the petroleum industry. Materials. 10(4): 369.

Informa (2019). Pharmaprojects Pharma R&D Annual Review 2019. [En línea]. Disponible en: https://pharmaintelligence.informa.com/~/media/informa-shop-window/pharma/2019/files/whitepapers/pharma-rd-review-2019-whitepaper.pdf. Fecha de consulta: 14 de marzo de 2020.

Jagtap, Y. M., Bhujbal, R. K., Ranade, A. N., and Ranpise, N. S. (2012). Effect of various polymers concentrations on physicochemical properties of floating microspheres. Indian Journal Pharmaceutical Sciences. 74(6): 512-520.

Jiang, M., Severson, K. A., Love, J. C., Madden, H., Swann, P., Zang, L., and Braatz, R. D. (2017). Opportunities and challenges of real-time release testing in biopharmaceutical manufacturing. Biotechnology and Bioengineering. 114(11): 2445-2456.

Jyothi, N. V., Prasanna, P. M., Sakarkar, S. N., Prabha, K. S., Ramaiah, P. S., and Srawan, G. Y. (2010). Microencapsulation techniques, factors influencing encapsulation efficiency. Journal of Microencapsulation. 27(3): 187-197.

Kang, F. and Singh, J. (2003). Conformational stability of a model protein (bovine serum albumin) during primary emulsification process of PLGA microspheres synthesis. International Journal of Pharmaceutics. 260(1): 149-156.

Kang, J., Wu, F., Cai, Y., Xu, M., He, M., and Yuan, W. (2014). Development of Recombinant Human Growth Hormone (rhGH) sustained-release microspheres by a low temperature aqueous phase/aqueous phase emulsion method. European Journal of Pharmaceutical Sciences. 62: 141-147.

Katti, D. and Krishnamurti, N. (1999). Preparation of albumin microspheres by an improved process. Journal of Microencapsulation. 16(2): 231-242.

Khalkhali, M., Sadighian, S., Rostamizadeh, K., Khoeini, F., Naghibi, M., Bayat, N., …, and Hamidi, M. (2015). Synthesis and characterization of dextran coated magnetite nanoparticles for diagnostics and therapy. BioImpacts: BI. 5(3): 141-150.

Kiafar, F., Siahi-Shadbad, M. R., and Valizadeh, H. (2016). Filgrastim (G-CSF) loaded liposomes: mathematical modeling and optimization of encapsulation efficiency and particle size. Bioimpacts. 6(4): 195-201.

Kim, N. A., Lim, D. G., Lim, J. Y., Kim, K. H., and Jeong, S. H. (2014). Comprehensive evaluation of etanercept stability in various concentrations with biophysical assessment. International Journal of Pharmaceutics. 460(1-2): 108-118.

Kim, S. J. and Kim, C. W. (2016). Development and Characterization of Sodium Hyaluronate Microparticle-Based Sustained Release Formulation of Recombinant Human Growth Hormone Prepared by Spray-Drying. Journal of Pharmaceutical Sciences. 105(2):613-622.

Kirchhoff, C. F., Wang, X. M., Conlon, H. D., Anderson, S., Ryan, A. M., and Bose, A. (2017). Biosimilars: key regulatory considerations and similarity assessment tools. Biotechnology and Bioengineering. 114(12): 2696-2705.

Lan, L., Tian, F. R., ZhuGe, D. L., ZhuGe, Q. C., Shen, B. X., Jin, B. H., ..., and Xu, H. L. (2017). Implantable porous gelatin microspheres sustained release of bFGF and improved its neuroprotective effect on rats after spinal cord injury. Plos One. 12(3): e0173814.

Laptoš, T. and Omersel, J. (2018). The importance of handling high-value biologicals: Physico-chemical instability and immunogenicity of monoclonal antibodies. Experimental and Therapeutic Medicine. 15(4): 3161-3168.

Li, X., Zhang, Y., Yan, R., Jia, W., Yuan, M., Deng, X., and Huang, Z. (2000). Influence of process parameters on the protein stability encapsulated in poly-DL-lactidepoly (ethylene glycol) microspheres. Journal of Controlled Release. 68(1): 41-52.

Li, W., Zhou, J., and Xu, Y. (2015). Study of the in vitro cytotoxicity testing of medical devices. Biomedical Reports. 3(5): 617-620.

Macura, S. L., Steinbacher, J. L., MacPherson, M. B., Lathrop, M. J., Sayan, M., Hillegass, J. M., ..., and Mossman, B. T. (2013). Microspheres targeted with a mesothelin antibody and loaded with doxorubicin reduce tumor volume of human mesothe liomas in xenografts. BMC Cancer. 13(1): 400.

Marquette, S., Peerboom, C., Yates, A., Denis, L., Langer, I., Amighi, K., and Goole, J. (2014). Stability study of full-length antibody (anti-TNF alpha) loaded PLGA microspheres. International Journal of Pharmaceutics. 470(1-2): 41-50.

McClements, D. J. (2018). Encapsulation, protection, and delivery of bioactive proteins and peptides using nanoparticle and microparticle systems: A review. Advances in Colloid and Interface Science. 253: 1-22.

Mietzner, R., Kade, C., Froemel, F., Pauly, D., Sta.mer, W. D., Ohlmann, A., and Breunig, M. (2020). Fasudil Loaded PLGA microspheres as potential intravitreal depot formulation for glaucoma therapy. Pharmaceutics. 12(8): 706.

Mohammed, M. A., Syeda, J. T. M., Wasan, K. M., and Wasan, E. K. (2017). An overview of chitosan nanoparticles and its application in non-parenteral drug delivery. Pharmaceutics. 9(4).

Morita, T., Sakamura, Y., Horikiri, Y., Suzuki, T., and Yoshino, H. (2000). Protein encapsulation into biodegradable microspheres by a novel S/O/W emulsion method using poly (ethylene glycol) as a protein micronization adjuvant. Journal of Controlled Release. 69(3): 435-444.

Nguyen, C. T., Kim, C. R., Le, T. H., Koo, K. I., and Hwang, C. H. (2020). Magnetically guided targeted delivery of erythropoietin using magnetic nanoparticles: Proof of concept. Medicine. 99(19): e19972.

Nguyen, H. X. and O’Rear, E. A. (2017). Modified dextran, heparin-based triggered release microspheres for cardiovascular delivery of therapeutic drugs using protamine as a stimulus. Journal of Microencapsulation. 34(3): 299-307.

Nifontova, G., Ramos-Gomes, F., Baryshnikova, M., Alves, F., Nabiev, I., and Sukhanova, A. (2019). Cancer cell targeting with functionalized quantum dotencoded polyelectrolyte microcapsules. Frontiers in Chemistry. 7: 34.

Nigen, M., Gaillard, C., Croguennec, T., Madec, M. N., and Bouhallab, S. (2010). Dynamic and supramolecular organisation of alpha-lactalbumin/lysozyme microspheres: A microscopic study. Biophysical Chemistry. 146(1): 30-35.

Ozkan, G., Franco, P., De-Marco, I., Xiao, J., and Capanoglu, E. (2019). A review of microencapsulation methods for food antioxidants: Principles, advantages, drawbacks and applications. Food Chemistry. 272: 494-506.

Paul, M., Vieillard, V., Jaccoulet, E., and Astier, A. (2012). Long-term stability of diluted solutions of the monoclonal antibody rituximab. International Journal of Pharmaceutics. 436(1-2): 282-290.

Pachioni-Vasconcelos, J., Lopes, A. M., Apolinario, A. C., Valenzuela-Oses, J. K., Costa, J. S., Nascimento, L., …, and Rangel-Yagui, C. de O. (2016). Nanostructures for protein drug delivery. Biomaterials Science. 4(2): 205218.

Pawar, V. K., Meher, J. G., Singh, Y., Chaurasia, M., Surendar-Reddy, B., and Chourasia, M. K. (2014). Targeting of gastrointestinal tract for amended delivery of protein/peptide therapeutics: strategies and industrial perspectives. Journal of Controlled Release. 196: 168-183.

Perry, S. L. and McClements, D. J. (2020). Recent advances in encapsulation, protection, and oral delivery of bioactive proteins and peptides using colloidal systems. Molecules 25(5): 1161.

Reinhold, S. E. and Schwendeman, S. P. (2013). Effect of polymer porosity on aqueous selfhealing encapsulation of proteins in PLGA microspheres. Macromolecular Bioscience. 13(12): 1700-1710.

Ribeiro, A. J., Silva, C., Ferreira, D., and Veiga, F. (2005). Chitosan-reinforced alginate microspheres obtained through the emulsification/internal gelation technique. European Journal of Pharmaceutical Sciences. 25(1): 31-40.

Ribeiro, M. P., Morgado, P. I., Miguel, S. P., Coutinho, P., and Correia, I. J. (2013). Dextran-based hydrogel containing chitosan microparticles loaded with growth factors to be used in wound healing. Materials Science and Engineering: C. 33(5): 2958-2966.

Rokstad, A. M., Lacik, I., de-Vos, P., and Strand, B. L. (2014). Advances in biocompatibility and physicochemical characterization of microspheres for cell encapsulation. Advanced Drug Delivery Reviews. 67: 111-130.

Sáenz-del-Burgo-Martínez, L., Ciriza-Astrain, J., Espona-Noguera, A., Xavier, I., Cabruja-Casas, E., Orive-Arroyo, G., ..., and Alvarez, M. (2018). 3D Printed porous polyamide macrocapsule combined with alginate microcapsules for safer cell-based therapies. Scientific Reports. 8(1): 8512.

Sánchez, A., Villamayor, B., Guo, Y., McIver, J., and Alonso, M. J. (1999). Formulation strategies for the stabilization of tetanus toxoid in poly (lactideco-glycolide) microspheres. International Journal of Pharmaceutics. 185(2): 255-266.

Savage, D. T., Hilt, J. Z., and Dziubla, T. D. (2019). In vitro methods for assessing nanoparticle toxicity. Methods in Molecular Biology. 1894: 1-29.

Schellekens, H. (2002). Bioequivalence and the immunogenicity of biopharmaceuticals. Nature Reviews Drug Discovery. 1(6): 457-462.

Schellekens, H. (2009). Biosimilar therapeutics-what do we need to consider? NDT Plus. 2(1): i27-i36.

Schick, C. (2009). Differential scanning calorimetry (DSC) of semicrystalline polymers. Analytical and Bioanalytical Chemistry. 395(6): 1589-1611.

Schuster, J., Koulov, A., Mahler, H. C., Detampel, P., Huwyler, J., Singh, S., and Mathaes, R. (2020). In vivo stability of therapeutic proteins. Pharmaceutical Research. 37(2): 23.

Sekhon, B. S. and Saluja, V. (2011). Biosimilars: an overview. Biosimilars. 1: 1-11.

Shah, R. B. and Schwendeman, S. P. (2014). A biomimetic approach to active selfmicroencapsulation of proteins in PLGA. Journal of Controlled Release. 196: 60-70.

Singh, M. N., Hemant, K. S., Ram, M., and Shivakumar, H. G. (2010). Microencapsulation: A promising technique for controlled drug delivery. Research in Pharmaceutical Sciences. 5(2): 65-77.

Wagh, A., Song, H., Zeng, M., Tao, L., and Das, T. K. (2018). Challenges and new frontiers in analytical characterization of antibody-drug conjugates. MAbs. 10(2): 222-243.

Wang, L., Liu, Y., Zhang, W., Chen, X., Yang, T., and Ma, G. (2013). Microspheres and microcapsules for protein delivery: strategies of drug activity retention. Current Pharmaceutical Design. 19(35): 6340-6352.

Wang, X., Qi, F., Xing, H., Zhang, X., Lu, C., Zheng, J., and Ren, X. (2019). Uniform-sized insulin-loaded PLGA microspheres for improved early-stage peri-implant bone regeneration. Drug Delivery. 26(1): 1178-1190.

Wong, C. Y., Al-Salami, H., and Dass, C. R. (2018). Microparticles, microcapsules and microspheres: A review of recent developments and prospects for oral delivery of insulin. International Journal of Pharmaceutics. 537(1-2): 223-244.

Yang, F., Song, F. L., Pan, Y. F., Wang, Z. Y., Yang, Y. Q., Zhao, Y. M., …, and Zhang, Y. M. (2010). Preparation and characteristics of interferon-alpha poly(lactic-co-glycolic acid) microspheres. Journal of Microencapsulation. 27(2): 133-141.

Yuan, W., Wu, F., Guo, M., and Jin, T. (2009). Development of protein delivery microsphere system by a novel S/O/O/W multi-emulsion. European Journal of Pharmaceutical Sciences. 36(2-3): 212-218.

Zhang, H., Wang, W., Li, H., Peng, Y., and Zhang, Z. (2018). Microspheres for the oral delivery of insulin: preparation, evaluation and hypoglycaemic effect in streptozotocin-induced diabetic rats. Drug Development and Industrial Pharmacy. 44(1): 109-115.

Zhao, Y. Y., Wang, N., Liu, W. H., Tao, W. J., Liu, L. L., and Shen, Z. D. (2016). Charge variants of an avastin biosimilar isolation, characterization, in vitro properties and pharmacokinetics in rat. Plos One. 11(3): e0151874.

Zheng, B. and McClements, D. J. (2020). Formulation of more efficacious curcumin delivery systems using colloid science: enhanced solubility, stability, and bioavailability. Molecules. 25(12): 2791.

Zhou, S., Sun, J., Sun, L., Dai, Y., Liu, L., Li, X., …, and Zhang, Z. (2008). Preparation and characterization of interferon-loaded magnetic biodegradable microspheres. Journal of Biomedical Materials Research. Part B. 87(1): 189-196.

Publicado

2021-01-30

Número

Sección

Biología y Química