Dióxido de zirconio: alternativas de síntesis y aplicaciones biomédicas

Autores/as

  • Marlene Larisa Andrade-Guel Centro de Investigación en Química Aplicada, Departamento de Materiales Avanzados, Saltillo, Coahuila, México.
  • Christian Javier Cabello-Alvarado CONACYT, Consorcio de Investigación Científica, Tecnológica y de Innovación del estado de Tlaxcala, (CITLAX), Departamento de Materiales Avanzados, calle 1 de mayo núm. 22, colonia centro, Tlaxcala de Xicoténcatl, Tlaxcala, México, C. P. 90000.
  • Carlos Alberto Ávila-Orta CONACYT, Consorcio de Investigación Científica, Tecnológica y de Innovación del estado de Tlaxcala, (CITLAX), Departamento de Materiales Avanzados, calle 1 de mayo núm. 22, colonia centro, Tlaxcala de Xicoténcatl, Tlaxcala, México, C. P. 90000.

DOI:

https://doi.org/10.29059/cienciauat.v14i1.1152

Palabras clave:

dióxido de zirconio, síntesis, aplicaciones

Resumen

Entre los diferentes materiales cerámicos, el dióxido de zirconio (ZrO2) se destaca, debido a sus aplicaciones en el área médica, química y farmacéutica. Esto es posible al ser un material de carácter anfótero, con tres fases cristalinas: monoclínica, tetragonal y cúbica, las cuales presentan distintas propiedades. El objetivo de este trabajo fue analizar los fundamentos de los diferentes métodos utilizados para la síntesis del ZrO2 y sus aplicaciones biomédicas. Las principales metodologías empleadas son los procesos hidrotérmico, precipitación, solvotérmica y sol-gel. La energía de ultrasonido y la radiación de microondas permiten reducir los tiempos de reacción y proporcionar mayor eficiencia energética a los procesos. El método de síntesis modifica las propiedades del ZrO2, lo cual es aprovechado para desarrollar diferentes aplicaciones, entre ellas destacan reemplazos óseos, prótesis dentales y liberación de fármacos.

Biografía del autor/a

Christian Javier Cabello-Alvarado, CONACYT, Consorcio de Investigación Científica, Tecnológica y de Innovación del estado de Tlaxcala, (CITLAX), Departamento de Materiales Avanzados, calle 1 de mayo núm. 22, colonia centro, Tlaxcala de Xicoténcatl, Tlaxcala, México, C. P. 90000.

Posdoctorante Departamento de Materiales Avanzados CIQA

Citas

Adraider, Y., Pang, Y. X., Nabhani, F., Hodgson, S. N., Sharp, M. C., and Al-Waidh, A. (2013). Fabrication of zirconium oxide coatings on stainless steel by a combined laser/sol–gel technique. Ceramics International. 39(8): 9665-9670.

Al-Radha, A. S. D., Dymock, D., Younes, C., and O’ Sullivan, D. (2012). Surface properties of titanium and zirconia dental implant materials and their effect on bacterial adhesion. Journal of dentistry. 40(2): 146-153.

Amuthasurabi, M., Chandradass, J., Babuc, V. R., Sethupathi, P. B., and Martin, M. L. J. (2017). Electrical characteristics of zinc oxide thin film transistor fabricated at high temperatura by RF magnetron sputtering technique. Journal of Ceramic Processing Research. 18(11): 815-818.

Bae, M. S., Kim, J. E., Lee, J. B., Heo, D. N., Yang, D. H., Kim, J. H., and Kwon, I. K. (2013). ZrO2 surface chemically coated with hyaluronic acid hydrogel loading GDF-5 for osteogenesis in dentistry. Carbohydrate polymers. 92(1): 167-175.

Balaji, J. and Sethuraman, M. G. (2016). Studies on the effects of thiourea and its derivatives doped—Hybrid/zirconium nanocomposite based sol-gel coating for the corrosion behaviour of aluminum metal. Progress in Organic Coatings. 99: 463-473.

Bang, J. H. and Suslick, K. S. (2010). Applications of ultrasound to the synthesis of nanostructured materials. Advanced materials. 22(10): 1039-1059.

Bangi, U. K., Park, C. S., Baek, S., and Park, H. H. (2013). Sol–gel synthesis of high surface area nanostructured zirconia powder by surface chemical modification. Powder technology. 239: 314-318.

Behbahani, A., Rowshanzamir, S., and Esmaeilifar, A. (2012). Hydrothermal synthesis of zirconia nanoparticles from commercial zirconia. Procedia Engineering. 42: 908-917.

Bethune, D. S., Kiang, C. H., De-Vries, M. S., Gorman, G., Savoy, R., Vazquez, J., and Beyers, R. (1993). Cobalt-cata-lysed growth of carbon nanotubes with single-atomic-layer walls. Nature. 363 (6430): 605-607.

Bhowmick, A., Pramanik, N., Jana, P., Mitra, T., Gnanamani, A., Das, M., and Kundu, P. P. (2017). Development of bone-like zirconium oxide nanoceramic modified chitosan based porous nanocomposites for biomedical application. International Journal of Biological Macromolecules. 95: 348-356.

Brant, K. U., Danny, A. B., Davidson, R. S., Hendrickson, M. J., Leach, J. J., and McKenzie, T. L. (2009). Method of making zirconia-containing nanoparticles. Patente WO 2009085926 A2 20090709.

Brinker, C. J. and Scherer, G. W. (2013). Sol-gel science: the physics and chemistry of sol-gel processing. United States of America: Academic press. 2 Pp.

Cabrera-López, J. J., Narváez, J. L. y Rodríguez-Páez, J. E. (2009). Síntesis de ZrO2 nanométrico utilizando precipitación controlada. Revista Facultad de Ingeniería Universidad de Antioquia. (47): 20-28.

Campo-Ceballos, D. A. y Rodriguez-Paez, J. E. (2010). Uso derutas químicas para sintetizar ZrO2 tetragonal. Revista Colombiana de Física. 42(1): 57-62.

Campo, D. y Rodríguez, J. (2011). ZrO2 tetragonal obtenido por el método de precipitación controlada. Dyna. 78(165): 224-223.

Carević, M. V., Abazović, N. D., Novaković, T. B., Pavlović, V. B., and Čomor, M. I. (2016). Zirconium dioxide nanopowders with incorporated Si4+ ions as efficient photocatalyst for degradation of trichlorophenol using simulated solar light. Applied Catalysis B: Environmental. 195: 112-120.

Catauro, M., Bollino, F., Papale, F., Pacifico, S., Galasso, S., Ferrara, C., and Mustarelli, P. (2014). Synthesis of zirconia/polyethylene glycol hybrid materials by sol–gel processing and connections between structure and release kinetic of indomethacin. Drug delivery. 21(8): 595-604.

Catauro, M., Raucci, M. G., and Continenza, M. A. (2007). Release kinetics of ampicillin, biocompatibility tests with a fibroblast strain of a zirconia gel glass. Letters in Drug Design & Discovery. 4(6): 453-459.

Catauro, M., Verardi, D., Melisi, D., Belotti, F., and Mustarelli, P. (2010). Novel sol-gel organic-inorganic hybrid materials for drug delivery. Journal of Applied Biomaterials & Biomechanics. 8(1): 42-51.

Cervantes, A. L., Galaviz, A. A., Aceves, C. y Fonseca, C. G. (2016). Diseño, fabricación y evaluación clínica de implantes trans-endodónticos de óxido de zirconio. [En línea]. Disponible en: http://www.reibci.org/publicados/2016/feb/1500105.pdf. Fecha de consulta: 9 de mayo de 2018.

Chen, Y., Lunsford, S. K., Song, Y., Ju, H., Falaras, P., Kontos, A. G., and Dionysiou, D. D. (2011). Synthesis, characterization and electrochemical properties of mesoporous zirconia nanomaterials prepared by self-assembling sol–gel method with Tween 20 as a template. Chemical engineering journal. 170(2-3):518-524.

Chepurna, I., Smotraev, R., Kanibolotsky, V., and Strelko, V. (2011). Colloidal and chemical aspects of nanosized hydrated zirconium dioxide synthesized via a sol–gel process. Journal of colloid and interface science. 356(2): 404-411.

Colilla, M., Manzano, M., Izquierdo-Barba, I., Vallet-Regí, M., Boissiére, C., and Sanchez, C. (2009). Advanced drug delivery vectors with tailored surface properties made of mesoporous binary oxides submicronic spheres. Chemistry of Materials. 22(5): 1821-1830.

Danilenko, I. A. (2008). Effect of temperature on the structural characteristics of zirconium dioxide nanoparticles produced under conditions of microwave treatment. Theoretical and Experimental Chemistry. 44(3): 144-149.

Davidson, R., Kolb, B., Anderson, D., Higgins, J., Hendrickson, M., and Brady, J. (2006). Patente USA. No. 20060148950 A1 20060706.

Devaraju, M. K., Liu, X., Yusuke, K., Yin, S., and Sato, T. (2009). Solvothermal synthesis and characterization of ceria–zirconia mixed oxides for catalytic applications. Nanotechnology. 20(40): 405606.

Feng, L., Gai, S., He, F., Dai, Y., Zhong, C., Yang, P., and Lin, J. (2017). Multifunctional mesoporous ZrO2 encapsulated up-conversion nanoparticles for mild NIR light activated synergistic cancer therapy. Biom aterials. 147: 39-52.

Ferraris, M., Verne, E., Appendino, P., Moisescu, C., Krajewski, A., Ravaglioli, A., and Piancastelli, A. (2000). Coatings on zirconia for medical applications. Biomaterials. 21(8): 765-773.

Garzón, A., Aguirre, N. y Olaya, J. (2013). Estado del arte en biocompatibilidad de recubrimientos. Visión electrónica. 7(1): 160-177.

Gedanken, A. (2003). Sonochemistry and its application to nanochemistry. Current science. 85(12): 1720-1722.

Gedanken, A. (2004). Using sonochemistry for the fabrication of nanomaterials. Ultrasonics sonochemistry. 11(2): 47-55.

Gubanova, N. N., Kopitsa, G. P., Ezdakova, K. V., Baranchikov, A. Y., Angelov, B., Feoktystov, A., ..., and Ivanov, V. K. (2014). Structure of zirconium dioxide based porous glasses. Journal of Surface Investigation. X-ray, Synchrotron and Neutron Techniques. 8(5): 967-975.

Guel, M. L. A., Jiménez, L. D., and Hernández, D. A. C. (2017). Ultrasound-assisted sol-gel synthesis of ZrO2. Ultrasonics sonochemistry. 35: 514-517.

Hang, C., Li, Q., Gao, S., and Shang, J. K. (2011). As (III) and As (V) adsorption by hydrous zirconium oxide nanoparticles synthesized by a hydrothermal process followed with heattreatment. Industrial & Engineering Chemistry Research. 51(1): 353-361.

Hernández-Enríquez, J. M., García-Serrano, L. A., García-Alamilla, R., Cortez-Lajas, L. A. y Cueto-Hernández, A. (2009). Síntesis, caracterización y evaluación catalítica de un ZrO2 con fase monoclínica. Superficies y vacío. 22(2): 1-9.

Hoek, A., Gerardus, N., and Lambertus, P. (2007). Zirconium stabilised Fischer Tropsch catalyst and catalyst support. Patente USA. WO 2007071701 A1 20070628.

Hua, Z., Wang, X. M., Xiao, P., and Shi, J. (2006). Solvent effect on microstructure of yttria-stabilized zirconia (YSZ) particles in solvothermal synthesis. Journal of the European Ceramic Society. 26(12): 2257-2264.

Huang, H. L., Chang, Y. Y., Weng, J. C., Chen, Y. C., Lai, C. H., and Shieh, T. M. (2013). Anti-bacterial performance of zirconia coatings on titanium implants. Thin Solid Films. 528: 151-156.

Jafari, M. T., Rezaei, B., and Bahrami, H. (2018). Zirconium dioxide-reduced graphene oxide nanocom-posite-coated stirbar sorptive extraction coupled with ion mobility spectrometry for determining ethion. Talanta. 182: 285-291.

Joo, J., Yu, T., Kim, Y. W., Park, H. M., Wu, F., Zhang, J. Z., and Hyeon, T. (2003). Multigram scale synthesis and characterization of monodisperse tetragonal zirconia nanocrystals. Journal of the American Chemical Society. 125(21): 6553-6557.

Kartashov, V. V., Denisova, É. I., Vlasov, A. V., Aleshin, D. K., and Blinnichev, A. A. (2010). High-strength ceramic based on zirconium dioxide: preparation and properties. Refractories and Industrial Ceramics. 51(4): 267-269.

Li, J., Wu, Y., Cao, J., Wei, Z., Guo, Y., Wang, Q., ..., and He, X. (2017). Excellent flexibility of high-temperature-treated SiO2-TiO2 hybrid fibres and their enhanced luminescence with Eu3+ doping. Ceramics International. 43(15): 12710-12717.

Liang, J., Deng, Z., Jiang, X., Li, F., and Li, Y. (2002). Photoluminescence of tetragonal ZrO2 nanoparticles synthe-sized by microwave irradiation. Inorganic chemistry. 41(14): 3602-3604.

Liang, W. and D’Alessandro, D. M. (2013). Microwaveassisted solvothermal synthesis of zirconium oxide based metal–organic frameworks. Chemical Communications. 49(35): 3706-3708.

Liu, X., Huang, A., Ding, C., and Chu, P. K. (2006). Bioactivity and cytocompatibility of zirconia (ZrO2) films fabricated by cathodic arc deposition. Biomaterials. 27(21): 3904-3911.

Lyubushkin, R. A., Sirota, V. V., and Ivanov, O. N. (2011). Fabrication and properties of zirconium ceramic from zirconium dioxide nanopowder. Glass and Ceramics. 68(1-2): 61-64.

Manicone, P. F., Iommetti, P. R., and Raffaelli, L. (2007). An overview of zirconia ceramics: basic pro-perties and clinical applications. Journal of Dentistry. 35(11): 819-826.

Meng, L. Y., Wang, B., Ma, M. G., and Lin, K. L. (2016). The progress of microwave-assisted hydrothermal method in the synthesis of functional nanomaterials. Materials Today Chemistry. 1: 63-83.

Meskin, P. E., Ivanov, V. K., Barantchikov, A. E., Churagulov, B. R., and Tretyakov, Y. D. (2006). Ultrasonically assisted hydrothermal synthesis of nanocrystalline ZrO2, TiO2, NiFe2O4 and Ni0.5 Zn0.5 Fe2O4 powders. Ultrasonics sonochemistry. 13(1): 47-53.

Mohammadi, M. R. and Fray, D. J. (2011). Synthesis and characterisation of nanosized TiO2–ZrO2 binary system prepared by an aqueous sol–gel process: Physical and sensing properties. Sensors and Actuators B: Chemical. 155(2): 568-576.

Nakonieczny, D. S., Ziębowicz, A., Paszenda, Z. K., and Krawczyk, C. (2017). Trends and perspectives in modification of zirconium oxide for a dental prosthetic applications–A review. Biocybernetics and Biomedical Engineering. 37(1): 229-245.

Narváez-Semanate, J. L., Cabrera, J. J., Vargas-Zapata, R. A. y Rodríguez-Páez, J. E. (2007). Obtención de nanopartículas de ZrO2 dopado con Y2O3 utilizando rutas químicas. Revista Latinoamericana de Metalurgia y Materiales. 27(2): 124-134.

Neunzehn, J., Lüttenberg, B., and Wiesmann, H. P. (2012). Investigation of biomaterials by human epithelial gingiva cells: an in vitro study. Head & face medicine. 8(1): 35.

Nikiforov, S. V., Kortov, V. S., Savushkin, D. L., Vokhmintsev, A. S., and Weinstein, I. A. (2017). Thermal quenching of luminescence in nanostructured monoclinic zirconium dioxide. Radiation Measurements. 106: 155-160.

Panova, T. I., Morozova, L. V., Drozdova, I. A., and Shilova, O. A. (2011). Sol-gel synthesis of solid solutions based on zirconium and hafnium dioxides. Glass Physics and Chemistry. 37(5): 505.

Pei, L., Xie, Y., Pei, Y., and Yuan, C. (2013). Synthesis and formation process of zirconium dioxide nanorods. Materials Science-Poland. 31(2): 186-192.

Penkina, T. N. (2017). Low-temperature aging of ceramic on the basis of tetragonal zirconium dioxide stabilized by cations of yttrium and ytterbium. Inorganic Materials: Applied Research. 8(5): 713-717.

Piconi, C. and Maccauro, G. (1999). Zirconia as a ceramic biomaterial. Biomaterials. 20(1): 1-25.

Podzorova, L. I., Titov, S. A., Il’icheva, A. A., Mikhailina, N. A., Pen’kova, O. I., Shvorneva, L. I., and Penkina, T. N. (2017). Low-temperature aging of ceramic on the basis of tetragonal zirconium dioxide stabilized by cations of yttrium and ytterbium. Inorganic Materials: Applied Research. 8(5): 713-717.

Prasad, K., Pinjari, D. V., Pandit, A. B., and Mhaske, S. T. (2011). Synthesis of zirconium dioxide by ultrasound assisted precipitation: effect of calcination temperature. Ultrasonics Sonochemistry. 18(5): 1128-1137.

Przemyslaw, J., Jedrzejczyk, R. J., Chlebda, D., and Dzied-zicka, A. (2018). Method of preparing a layer of zirconium (iv) oxide as a catalytic carrier on a metallic substrate. Patente WO 2018056849 A1 20180329.

Sahoo, T. R., Manoharan, S. S., Lim, S. H., and Salamanca-Riba, L. G. (2008). Structural and magnetic properties of cubic zirconia/Co composites synthesized by microwave route.

Synthesis and Reactivity in Inorganic, Metal-Organic and Nano-Metal Chemistry. 38(3): 280-283.

Shevchenko, A. V., Lashneva, V. V., Ruban, A. K., Tsukrenko, V. V., and Dudnik, E. V. (2016). Synthesis and Study of highpurity nanocrystalline powder of a solid solution of CeO2 and Y2O3 in zirconium dioxide. Powder Metallurgy and Metal Ceramics. 54(9-10): 548-553.

Shukla, S., Seal, S., Vij, R., and Bandyopadhyay, S. (2002). Effect of HPC and water concentration on the evolution of size, aggregation and crystallization of sol-gel nano zirconia. Journal of Nanoparticle Research. 4(6): 553-559.

Siddiquey, I. A., Furusawa, T., Sato, M., Bahadur, N. M., Uddin, M. N., and Suzuki, N. (2011). A rapid method for the preparation of silica-coated ZrO2 nanoparticles by microwave irradiation. Ceramics International. 37(6): 1755-1760.

Sollazzo, V., Pezzetti, F., Scarano, A., Piattelli, A., Bignozzi, C. A., Massari, L., ..., and Carinci, F. (2008). Zirconium oxide coating improves implant osseointegration in vivo. Dental Materials. 24(3): 357-361.

Sponchia, G., Benedetti, A., and Riello, P. (2016). Totallymesoporous zirconia nanoparticles, use and method for producing thereof. Patente WO 2016120795 A1 20160804.

Strizhak, P. E., Tripol’skii, A. I., Gurnik, T. N., Tuzikov, F. V., Moroz, É. M., Konstantinova, T. E., ..., and Danilenko, I. A. (2008). Effect of temperature on the structural characteristics of zirconium dioxide nanoparticles produced under conditions of microwave treatment. Theoretical and Experimental Chemistry. 44(3): 144-149.

Teymourian, H., Salimi, A., Firoozi, S., Korani, A., and Soltanian, S. (2014). One-pot hydrothermal synthesis of zirconium dioxide nanoparticles decorated reduced graphene oxide composite as high performance electrochemical sensing and biosensing platform. Electrochimica Acta. 143: 196-206.

Tonto, P., Mekasuwandumrong, O., Phatanasri, S., Pavarajarn,V., and Praserthdam, P. (2008). Preparation of ZnO2 nanorod by solvothermal reaction of zinc acetate in various alcohols. Ceramics International. 34(1): 57-62.

Vanetsev, A. S., Ivanov, V. K., Kolen’ko, Y. V., Oleinikov, N. N., Murav’eva, G. P., and Tret’yakov, Y. D. (2002). Synthesis of spherical oxide particles in microwave hydrolysis of Zr (IV), Ce (IV), and Ni (II) salt solutions. Doklady Chemistry. 385 (1-3): 175-177.

Volpato, C. Â. M., Altoé-Garbelotto, L. G. D., Fredel, M. C., and Bondioli, F. (2011). Application of zirconia in dentistry: biological, mechanical and optical considerations. In Advances in ceramics-electric and magnetic ceramics, bioceramics, ceramics and environment. [En línea]. Disponible en: https://www.intechopen.com/books/advances-in-ceramics-electric-and-magnetic-ceramics-bioceramics-ceramics-and-environment/application-of-zirconia-in-dentistry-biologicalmechanical-and-optical-considerations/. Fecha de consulta: 11 de mayo de 2018.

Wan, C., Lu, Y., Sun, Q., and Li, J. (2014). Hydrothermal synthesis of zirconium dioxide coating on the surface of wood with improved UV resistance. Applied Surface Science. 321: 38-42.

Wang, X. M., Lorimer, G., and Xiao, P. (2005). Solvothermal synthesis and processing of yttria-stabilized zirconia nanopowder. Journal of the American Ceramic Society. 88(4): 809-816.

Wang, J., Yin, W., He, X., Wang, Q., Guo, M., and Chen, S. (2016). Good biocompatibility and sintering properties of zirconia nanoparticles synthesized via vapor-phase hydrolysis. Scientific Reports. 6: 35020.

Wang, T., Yu, Q., Kong, J., and Wong, C. (2017). Synthesis and heat-insulating properties of yttria-stabilized ZrO2 hollow fibers derived from a ceiba template. Ceramics International. 43(12): 9296-9302.

Ward, D. A. and Ko, E. I. (1993). Synthesis and structural transformation of zirconia aerogels. Chemistry of Materials. 5(7): 956-969.

Wu, J., Wang, X., Wang, C., Wei, X., and Quan, R. (2017). Regeneration of HA coating on porous ZrO2 gradient bioceramics. Transactions of the Indian Ceramic Society. 76(4): 252-257.

Zhang, G. L., Gao, X. M., and Xu, X. D. (2013). Microwaveassisted synthesis of nanocrystalline zirconium dioxide using an ionic liquid. Applied Mechanics and Materials. 271: 255-258.

Zhang, P., Yan, S., Li, S., Geng, Y., and Chen, W. (2018). Ceramic coatings formed on oxidation the surface in aluminate of ZrH1.8 system by micro-arc. In Y. Han (Ed.), Advances in Energy and Environmental Materials: Proceedings of Chinese Materials Conference (pp. 179). China: Springer.

Zhao, J., Fan, W., Wu, D., and Sun, Y. (2000). Synthesis of highly stabilized zirconia sols from zirconium n-propoxidediglycol system. Journal of Non-Crystalline Solids. 261(1-3): 15-20.

Zhu, X. H. and Hang, Q. M. (2013). Microscopical and physical characterization of microwave and microwave-hydrothermal synthesis products. Micron. 44: 21-44.

Zinatloo-Ajabshir, S. and Salavati-Niasari, M. (2016). Facile route to synthesize zirconium dioxide (ZrO2) nanostructures: structural, optical and photocatalytic studies. Journal of Molecular Liquids. 216: 545-551.

Publicado

2019-07-29

Cómo citar

Andrade-Guel, M. L., Cabello-Alvarado, C. J., & Ávila-Orta, C. A. (2019). Dióxido de zirconio: alternativas de síntesis y aplicaciones biomédicas. CienciaUAT, 14(1), 18-30. https://doi.org/10.29059/cienciauat.v14i1.1152

Número

Sección

Biología y Química

Artículos similares

También puede {advancedSearchLink} para este artículo.