Utilización de microorganismos de ambientes extremos y sus productos en el desarrollo biotecnológico

Autores/as

  • Rosa María Oliart-Ros Instituto Tecnológico de Veracruz, Unidad de Investigación y Desarrollo en Alimentos, M. A. de Quevedo núm. 2779, Veracruz, Veracruz, México, C.P. 91860.
  • María Guadalupe Sánchez-Otero Universidad Veracruzana, Facultad de Bioanálisis, Carmen Serdán e Iturbide S/N, col. Flores Magón, Veracruz, Veracruz, México, C.P. 91700.
  • Ángeles Manresa-Presas Universitat de Barcelona, Facultat de Farmacia, Unitat de Microbiologia, Av. Joan XXIII, 27-31, E-08028, Barcelona, España

DOI:

https://doi.org/10.29059/cienciauat.v11i1.556

Palabras clave:

microorganismos, extremófilos, biotecnología.

Resumen

La biotecnología representa una alternativa viable para el desarrollo industrial sustentable, ya que provee las herramientas necesarias para adaptar y modificar organismos, productos, sistemas y procesos naturales para mejorar el quehacer industrial, haciéndolo más rentable, diverso y amigable con el entorno de lo que pueden ser los procesos químicos y físicos tradicionales. En este sentido, los microorganismos extremófilos constituyen la opción más prometedora como fuente de biomoléculas con capacidad biocatalizadora, capaces de soportar condiciones drásticas de proceso y cuyo uso comercial puede conducir a la sustentabilidad industrial.

Biografía del autor/a

María Guadalupe Sánchez-Otero, Universidad Veracruzana, Facultad de Bioanálisis, Carmen Serdán e Iturbide S/N, col. Flores Magón, Veracruz, Veracruz, México, C.P. 91700.

Profesora de Tiempo Completo. Laboratorio de Química y Bioetcnología.
Facultad de Bioanálisis

Citas

Antranikian, G., Vorgias, C. E., and Bertoldo, C. (2005). Extreme environments as a resource for microorganisms and novel biocatalysts. Advances in Biochemical Engineering/Biotechnology. 96: 219-262.

Bonaterra, A., Camps, J., and Montesinos, E. (2005). Osmotically induced trehalose and glycine betaine accumulation improves tolerance to desiccation, survival and efficacy of the postharvest biocontrol agent Pantoea agglomerans EPS125. FEMS microbiology letters. 250(1): 1-8.

Canganella, F. and Wiegel, J. (2011). Extremophiles: from abyssal to terrestrial ecosystems and possibly beyond. Naturwissenschaften. 98(4): 253-279.

Castro-Ochoa, L. D., Rodríguez-Gómez, C., Valerio-Alfaro, G., and Ros, R. M. (2005). Screening, purification and characterization of the thermoalkalophilic lipase produced by Bacillus thermoleovorans CCR11. Enzyme and Microbial Technology. 37(6): 648-654.

Cavicchioli, R., Charlton, T., Ertan, H., Omar, S. M., Siddiqui, K. S., and Williams, T. J. (2011). Biotechnological uses of enzymes from psychrophiles. Microbial biotechnology. 4(4): 449-460.

Demain, A. L. and Adrio, J. L. (2008). Contributions of microorganisms to industrial biology. Molecular Biotechnology. 38(1): 41-55.

Eijsink, V. G. H., Björk, A., Gaseidnes, S., Sirevag, B., Syntad, B., Van-Den-Burg, G., and Vriend, G. (2004). Rational engineering of enzyme stability. Journal of Biotechnology. 113(1): 105-120.

Espinosa-Luna, G., Sánchez-Otero, M. G., Quintana-Castro, R., Matus-Toledo, R. E., and Oliart-Ros, R. M. (2016). Gene Cloning and Characterization of the Geobacillus thermoleovorans CCR11 Carboxylesterase CaesCCR11, a New Member of Family XV. Molecular biotechnology. 58(1): 37-46.

Ferrer, M., Golyshina, O., Beloqui, A., and Golyshin, P. N. (2007). Mining enzymes from extreme environments. Current Opinion in Microbiology. 10(3): 207–214.

Frias, A., Manresa, A., de-Oliveira, E., López-Iglesias, C., and Mercadé, E. (2010). Membrane vesicles: a common feature in the extracellular matter of cold-adapted antarctic bacteria. Microbiology Ecology. 59(3): 476-486.

Freitas, F., Alves, V. D., and Reis, M. A. (2011). Advances in bacterial exopolysaccharides: from production to biotechnological applications. Trends in Biotechnology. 29(8): 388-398.

Gavrilescu, M. and Chisti, Y. (2005). Biotechnology a sustainable alternative for chemical industry. Biotechnology Advances. 23(7): 471–499.

Gomes, J. and Steiner, W. (2004). The biocatalytic potential of extremophiles and extremozymes. Food Technology and Biotechnology. 42(4): 223-225.

Gotor-Fernández, V., Brieva, R., and Gotor, V. (2006). Lipases: useful biocatalysts for the preparation of pharmaceuticals. Journal of Molecular Catalysis B: Enzymatic. 40(3): 111–120.

Haki, G. D. and Rakshit, S. K. (2003). Developments in industrially important thermostable enzymes: a review. Bioresource Technology. 89(1): 17-34.

Hasan, F., Shah, A. A., and Hameed, A. (2006). Industrial applications of microbial lipases. Enzyme and Microbial Technology. 39(2): 235–251.

Hasan, F., Shah, A. A., Javed, S., and Hameed, A. (2010). Enzymes used in detergents: lipases. African Journal of Biotechnology. 9(31): 4836-4844.

Hezayen, F. F., Rehm, B. H. A., Eberhardt, R., and Stein-büchel, A. (2000). Polymer production by two newly isolated extremely halophilic archaea: application of a novel corrosion-resistant bioreactor. Applied Microbiology and Biotechnology. 54(3): 319-325.

Horikoshi, K. (1999). Alkaliphiles: some applications of their products for biotechnology. Microbiology and Molecular Biology Reviews. 63(4): 735–750.

Hough, D. W. and Danson, M. J. (1999). Extremozymes. Current Opinion in Chemical Biology. 3(1): 39-46.

Jia, B., Cheong, G. W., and Zhang, S. (2013). Multifunctional enzymes in archaea: promiscuity and moonlight. Extremophiles. 17(2): 193-203.

Kennedy, J., O’Leary, N. D., Kiran, G. S., Morrissey, J. P., O’Gara, F., Selvin J., and Dobson, A. D. (2011). Functional metagenomic strategies for the discovery of novel enzymes and biosurfactants with biotechnological applications from marine ecosystems. Journal of Applied Microbiology. 111(4): 787-99.

Khire, J. M. (2010). Bacterial surfactants and their role in Microbial Enhanced Oil Recovery (MEOR). En R. Sen (Ed.), Biosurfactants. Advances in experimental medicine and biology series. (pp. 146-157). USA: Springer.

Kunioka, M. (1997). Biosynthesis and chemical reaction of poly (amino acid)s from microorganisms. Applied Microbiology and Biotechnology. 47(5): 469-475.

Lei, H. Y. and Chang, C. P. (2007). Induction of autophagy by concanavalin A and its application in antitumor therapy. Autophagy. 3(4): 402-404.

Lenzen, G. and Schwarz, T. (2006). Extremolytes: natural compounds from extremophiles for versatile applications. Applied Microbiology and Biotechnology. 72(4): 623-634.

Littlechild, J. A. (2015). Archaeal enzymes and applications in industrial biocatalysts. Archaea. 2015: 1-10.

Madigan, M. T. and Marrs, B. L. (1997). Extremophiles. Scientific. American. 276: 82–87.

Madigan, M. T., Martinko, J. M., Stahl, D., and Clark, D. P. (2003). Brock biology of microorganisms. USA: Pearson Education, Inc. 694 Pp.

Margesin, R. and Schinner, F. (2001). Potential of halotolerant and halophilic microorganisms for biotechnology. Extremophiles. 5(2): 73-83.

McMahon, S. and Parnell, J. (2014). Weighing the deep continental biosphere. FEMS Microbial Ecology. 87(1): 113-20.

Miranda-Tello, E., Fardeau, M. L., Thomas, P., Ramirez, F., Casalot, L., Cayol, J. L., ..., and Ollivier, B. (2004). Petrotoga mexicana sp. nov. a novel thermophilic, anaerobic and xylanolytic bacterium isolated from an oil-producing well in the Gulf of Mexico. International Journal of Systematic and Evolutionary Microbiology. 54(1): 169–174.

ONU, Organización de las Naciones Unidas (1992). Convenio sobre Diversidad Biológica de 1992. [En línea]. Disponible en: http://www.cbd.int/doc/legal/cbd-es.pdf. Fecha de consulta: 2 de septiembre de 2014.

Otero, J. M. and Nielsen, J. (2010). Industrial Systems Biology. Biotechnology and Bioengineering. 105(3): 439-460.

Pinzón-Martínez, D. L., Rodríguez-Gómez, C., Miñana-Galbis, D., Valerio-Alfaro, G., and Oliart-Ros, R. M. (2010). Thermophilic bacteria from Mexican thermal environments: Isolation and potential applications. Environmental Technology. 31(8-9): 957-966.

Quintana-Castro, R., Díaz, P., Valerio-Alfaro, G., García, H.S., Oliart-Ros, R. (2009). Gene cloning, expression and characterization of the Geobacillus thermoleovorans CCR11 thermoalkaliphilic lipase. Molecular biotechnology. 42(1): 75-83.

Reed, C. J., Lewis, H., Trejo, E., Winston, V., and Evilia, C. (2013). Protein adaptations in archaeal extremophiles. Archaea. 2013: 1-14.

Rothschild, L. J. and Mancinnelli, R. L. (2001). Life in extreme environments. Nature. 409(6823): 1092-1101.

Ruiz-Romero, E., Alcántara-Hernández, R., Cruz-Mondragon, C., Marsch, R., Luna-Guido, M. L., and Dendooven, L. (2009). Denitrification in extreme alkaline saline soils of the former lake Texcoco. Plant and Soil. 319(1-2): 247-257.

Sánchez-Otero, M. G., Valerio-Alfaro, G., Garcia-Galindo, H. S., and Oliart-Ros, R. M. (2008). Immobilization in the presence of Triton X-100: modifications in activity and thermostability of Geobacillus thermoleovorans CCR11 lipase. Journal of industrial microbiology & biotechnology. 35(12): 1687-1693.

Sánchez-Otero, M. G., Quintana-Castro, R., Mora-González, P., Márquez-Molina, O., Valerio-Alfaro, G., and Oliart-Ros, R. M.(2010). Enzymatic reactions and synthesis of n-butyl caproate: esterification, transesterification and aminolysis using a recombinant lipase from Geobacillus thermoleovorans CCR11. Environmental Technology. 31(10): 1101-1106.

Sánchez-Otero, M. G., Ruiz-López, I. I., Avila-Nieto, D. E., and Oliart-Ros, R. M. (2011). Significant improvement of Geobacillus thermoleovorans CCR11 thermoalkalophilic lipase production using Response Surface Methodology. New Biotechnology. 28(6): 761-766.

Sára, M., Egelseer, E. M., Huber, C., Ilk, N., Pleschberger, M., Pum, D., and Sleytr, U. B. (2006). S-layer proteins: potential application in nano (bio)technology. En B. H. Rehn (Ed.), Microbial bionanotechnology: biological self-assembly systems and biopolymer-based nanostructures (pp. 307-338). U.K.: Horizon Scientific Press.

Sarmiento, F., Peralta, R., and Blamey, J. M. (2015). Cold and hot extremozymes: industrial relevance and current trends. Frontiers in Bioengineering and Biotechnology. 3: 148.

Sauer, T. and Gallinski, E. A. (1998). Bacterial milking: a novel bioprocess for production of compatible solutes. Biotechnology and Bioengineering. 57(3): 306-313.

Simon, R. C., Mutti, F. G., and Kroutil, W. (2013). Biocatalytic synthesis of enantiopure building blocks for pharmaceuticals. Drug Discovery Today: Technologies. 10(1): e37-e44.

Singh, B. K. (2010). Exploring microbial diversity for biotechnology: the way forward. Trends in Biotechnology. 28(3): 111-116.

Souza, V., Espinosa-Asuar, L., Escalante, A. E., Eguiarte, L. E., Farmer, J., Forney, L., …, and Elser, J. J. (2006). An endangered oasis of aquatic microbial biodiversity in the Chihuahuan desert. Proceedings of the National Academy. 103(17): 6565–6570.

Squillaci, G., Finamore, R., Diana, P., Restaino, O. F., Schiraldi, C., Arbucci, S., …, and Morana, A. (2016). Production and properties of an exopolysaccharide synthesized by the extreme halophilic archaeon Haloterrigena turkmenica. Applied Microbiology and Biotechnology. 100(2): 613-623.

Stewart, E. J. (2012). Growing unculturable bacteria. Journal of bacteriology. 194(16): 4151-4160.

Tang, W. L. and Zhao, H. (2009). Industrial biotechnology: Tools and applications. Journal Biotechnology. 4(12): 1725–1739.

Valenzuela-Encinas, C., Neria-González, I., Alcántara-Hernández, R. J., Enríquez-Aragón, J. A., Estrada-Alvarado, I., Hernández-Rodríguez, C., …, and Marsch, R. (2008). Phylogenetic analysis of the archaeal community in an alkaline-saline soil of the former lake Texcoco (Mexico). Extremophiles. 12(2): 247-254.

Van-Den-Burg, B. (2003). Extremophiles as a source for novel enzymes. Current opinion in microbiology. 6(3): 213-218.

Wiegel, J. and Kevbrin, V. V. (2004). Alkalithermophiles. Biochemical Society Transactions. 32(2): 193-198.

Publicado

2016-08-31

Cómo citar

Oliart-Ros, R. M., Sánchez-Otero, M. G., & Manresa-Presas, Ángeles. (2016). Utilización de microorganismos de ambientes extremos y sus productos en el desarrollo biotecnológico. CienciaUAT, 11(1), 79-90. https://doi.org/10.29059/cienciauat.v11i1.556

Número

Sección

Biotecnología y Ciencias Agropecuarias