La importancia de la microbiota intestinal en la fisiología y rendimiento de pollos de engorda y gallinas de postura

Autores/as

  • Jesús Emiliano Alvarado-López Universidad Nacional Autónoma de México, Facultad de Estudios Superiores Cuautitlán, Departamento de Ciencias Pecuarias, Campo 4, carretera Cuautitlán-Teoloyucan km 2.5, col. San Sebastián Xhala, Cuautitlán Izcalli, Estado de México, México, C. P. 54714.
  • Elein Hernández Universidad Nacional Autónoma de México, Facultad de Estudios Superiores Cuautitlán, Departamento de Ciencias Pecuarias, Campo 4, carretera Cuautitlán-Teoloyucan km 2.5, col. San Sebastián Xhala, Cuautitlán Izcalli, Estado de México, México, C. P. 54714. http://orcid.org/0000-0002-8761-3656

DOI:

https://doi.org/10.29059/cienciauat.v18i2.1795

Palabras clave:

microbiota, metabolismo, avicultura, salud animal, gallinas de postura

Resumen

El estudio de la microbiota ha adquirido un nuevo enfoque de interés, ya que interviene en diversos procesos fisiológicos involucrados en el desarrollo y rendimiento de los animales domésticos. Participa en el eje-microbiota-intestino-cerebro, con procesos que rigen el sistema nervioso hacia el intestino y viceversa. El objetivo de este trabajo fue identificar la importancia de la microbiota gastrointestinal de pollos de engorda y gallinas de postura y su relación con procesos fisiológicos que afecten el desarrollo, rendimiento, comportamiento y salud. En el tracto gastrointestinal de estas aves se han identificado alrededor de 17 filos de bacterias, con microorganismos predominantes según el sitio anatómico dentro del tracto y por ende con diferente función, por ejemplo, buche: Lactobacillus, Enterobacteriaceae; proventrículo: Clostridiaceae, Enterococcus; intestino: Escherichia, Streptococcus. Distintos factores intervienen en la colonización y desarrollo de la microbiota, desde el programa de alimentación y manejo, tipo de cama y densidad animal, entre otros. Existen microorganismos potencialmente patógenos que impactan negativamente en la microbiota y puedan llegar al consumidor, como Campylobacter jejuni, Salmonella enteritidis y Escherichia coli, de ahí su importancia al momento de trazar las directrices en las producciones pecuarias.

Citas

Abaidullah, M., Peng, S., Kamran, M., Yin, Z., and Song, X. (2019). Current findings on gut microbiota mediated immune modulation against viral diseases in chicken. Viruses. (11): 1-14.

Angel, R., Kim, S. W., Li, W., and Jimenez-Moreno, E. (2013). Velocidad de paso y pH intestinal en aves: Implicaciones para la digestión y el uso de enzimas. XXIX Curso de Especialización FEDNA. [En línea]. Disponible: https://www.produccion-animal.com.ar/produccion_aves/produccion_avicola/05-13CAP_VIIItrad.pdf. Fecha de consulta: 28 de enero de 2022.

Berding, K., Vlckova, K., Marx, W., Schellekens, H., Stanton, C., Clarke, G., …, and Cryan, J. F. (2021). Diet and the microbiota-gut-brain axis: Sowing the seeds of good mental health. Advances in Nutrition. (12): 1239-1285.

Berg, G., Rybakova, D., Fischer, D., Cernava, T., Vergès, M. C. C., Charles, T., …, and Schloter, M. (2020). Microbiome definition revisited: old concepts and new challenges. Microbiome. (8): 1-22.

Borda-Molina, D., Iffland, H., Schmid, M., Muller, R., Schad, S., Seifert, J., …, and Camarinha-Silva, A. (2021). Gut microbial composition and predicted functions are not associated with feather pecking and antagonistic behavior in laying hens. Life. (11): 1-13.

Bravo, J. A., Forsythe, P., Chew, M. V., and Cryan J. F. (2011). Ingestion of Lactobacillus strain regulates emotional behavior and central GABA receptor expression in a mouse via the vagus nerve. Biological sciences. (38): 16050-16055.

Cao, C., Chowdhury, V. S., Cline, M. A., and Gilbert, E. R. (2021). The microbiota-gut-brain axis during heat stress in chickens: A review. Frontiers in Physiology. (12): 1-11.

Clavijo, V. and Florez, J. (2018). The gastrointestinal microbiome and its association with the control of pathogens in broiler chicken production: A review. Poultry Science. (97): 1006-1021.

Hammer, T., Sanders, J., and Fierer, N. (2019). Not all animals need a microbiome. FEMS Microbiology Letters. (366): 1-11.

Kayal, A., Stanley, D. Radovanovic, A., Horyanto, D., Bajagai, Y., and Hao-Van, T. (2022). Controlled intestinal microbiota colonization in broilers under the industrial production system. Animals. (12): 1-19.

Kraimi, N., Dawkins, M., Gebhardt-Henrich, S. G., Velge, P., Rychlik, I., Volf, J., …, and Leterrier, C. (2019). Influence of the microbiota-gut-brain axis on behavior and welfare in farm animals: A review. Physiology and Behavior. (210): 1-12.

Kogut, M. H. (2019). The effect of microbiome modulation on the intestinal health of poultry. Animal Feed Science and Technology. (250): 32-40.

Lv, H., Huang, Y., Wang, T., Zhai, S., Hou Z., and Chen, S. (2021). Microbial composition in the duodenum and ileum of yellow broilers with high and low feed efficiency. Frontiers in Microbiology. (12).

Mancabelli, L., Ferrario, C., Milani, C., Mangifesta, M., Turroni, F., Duranti, S., …, and Ventura, M. (2016). Insights into the biodiversity of the gut microbiota of broiler chickens. Environmental Microbiology. (18): 4727-4738.

Marmion, M., Ferone, M. T., Whyte, P., and Scannell, A. G. M. (2021). The changing microbiome of poultry meat; from farm to fridge. Food Microbiology. (99): 1-16.

Oakley, B. B., Lillehoj, H. S., Kogut, M. H., Kim, W. K., Maurer, J. J., Pedroso, A., …, and Cox, N. A. (2014). The chicken gastrointestinal microbiome. FEMS Microbiology Letters. (360): 100-112.

Orso, C., Stefanello, T. B., Franceschi, C. H., Mann, M. B., Varela, A. P. M., Catro, I. M. S., ..., and Ribeiro, A. M. L. (2021). Changes in the ceca microbiota of broilers vaccinated for coccidiosis or supplemented with salinomycin. Poultry Science. (100): 1-9.

Page, M. J., McKenzie, J. E., Bossuyt, P. M., Boutron, I., Hoffmann, T. C., Mulrow, C. D., …, and Moher, D. (2021). The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. International Journal of Surgery. (88): 1-9.

Qamar, A., Waheed, J., Hamza, A., Mohyuddin, S. G., Lu, Z., Namula, Z, …, and Chen, J. J. (2020). The role of intestinal microbiota in chicken health, intestinal physiology and immunity. Journal of Animal and Plant Sciences. (31): 342-351.

Qi, M., Tan, B., Wang, J., Liao, S., Deng, Y., Ji, P., …, and Yin, Y. (2021). The microbiota–gut–brain axis: A novel nutritional therapeutic target for growth retardation. Critical Reviews in Food Science and Nutrition. (62): 4867-4892.

Queiroz, S. A. L., Ton, A. M. M., Pereira, T. M. C., Campagnaro, B. P., Martinelli, L., Picos, A., …, and Vasquez, E. C. (2022). The gut microbiota-brain axis: A new frontier on neuropsychiatric disorders. Frontiers in Psychiatry. (13): 1-10.

Ravindran V. (2013). Feed enzymes: The science, practice, and metabolic realities. Poultry Science Association. (22): 628-636.

Rehman, H. U., Vahjen, W., Awad, W. A., and Zentek, J. (2007). Indigenous bacteria and bacterial metabolic products in the gastrointestinal tract of broiler chickens. Archives of Animal Nutrition. (61): 319-335.

Rowland, I., Gibson, G., Heinken, A., Scott, K., Swann, J., Thiele, I., and Tuohy, K. (2018). Gut microbiota functions: metabolism of nutrients and other food components. European Journal of Nutrition. (57): 1-24.

Rychlik, I. (2020). Composition and Function of Chicken Gut Microbiota. Animals. 10(1): 1-20.

Saati-Santamaría, Z., Revilla-Martín, I., García-Fraile, P., and Palacios-Riocerezo, C. (2022). Evolution and predicted functions of the microbiota of the medium-slow growing chicken during the first 4 weeks of chick development. Annals of Applied Biology. (181):9-21.

Seidlerova, Z., Kubasova, T., Faldynova, M., Crhanova, M., Karasova, D., Babak, V., and Rychlik, I. (2020). Environmental impact on differential composition of gut microbiota in indoor chickens in commercial production and outdoor, backyard chickens. Microorganisms. (8): 1-11.

Sekelja, M., Rud, I., Knusten, S., Denstadli, V., Westereng, B., Naes, T., and Rudi, K. (2012). Abrupt temporal fluctuations in the chicken fecal microbiota are explained by its gastrointestinal origin. Applied Environmental Microbiology. (78): 2941-2948.

Shivajyothi, J. and Krishna, S. (2020). Poultry gut microbiota - Composition and its role in health, immunity and production performance. Indian Journal of Animal Health. (52): 164-180.

Stanley, D., Geier, M., Hughes, R., Denman, S., and Moore, R. (2013). Highly variable microbiota development in the chicken gastrointestinal tract. Plos One. (8): 1-7.

Stanley, D., Hughes, R. J., and Moore, R. J. (2014). Microbiota of the chicken gastrointestinal tract: Influence on health, productivity and disease. Applied Microbiology and Biotechnology. (98): 4301-4310.

Torok, V., Hughes, R., Mikkelsen, L., Perez-Maldonado, R., Balding, K., McAlpine, R., …, and Ophel-Keller, K (2011). Identification and characterization of potential performance related gut microbiota in broiler chickens across various feeding trials. Applied and Environmental Microbiology. (77): 5868-5878.

Trawińska, B., Chmielowiec-Korzeniowska, A., Nowakowicz-Dębek, B., Tymczyna, L., Bombik, T., Pyrz, M., and Tymczyna-Sobotka, M., (2016). Evaluation of microbial contamination of feces and soil on a laying-hen farm depending on sampling site and season. Revista Brasileria de Zootecnia. (45): 190-194.

Valladares-de-la-Cruz, J. C. (2019). Diferencias Anatómicas, Histológicas y Fisiológicas entre Mamíferos y Aves - BM Editores. [En línea]. Disponible en: https://bmeditores.mx/entorno-pecuario/diferencias-anatomicas-histologicas-y-fisiologicas-entre-mamiferos-y-aves-2214/. Fecha de consulta: 12 de febrero de 2023.

Van-der-Eijk, J., de-Vries, H., Kjaer, J. B., Naguib, M., Kemp, B., Smidt, H., ..., and Lammers, A. (2019). Differences in gut microbiota composition of laying hen lines divergently selected on feather pecking. Poultry Science. (98): 7009-7021.

Van-der-Hoeven-Hangoor, E., Van-der-Voosen, J., Shuren, F., Verstegen, M., de-Oliveira, J., Montijin, R., and Hendriks, W. (2013). Ileal microbiota composition of broilers fed various commercial diet compositions. Poultry Science. (92): 2713-2723.

Wickramasuriya, S. S., Park, I., Lee, K., Lee, Y., Kim, W. H., Nam, H., Lillehoj, and H. S. (2022). Role of physiology, immunity, microbiota, and infectious diseases in the gut health of poultry. Vaccines. (10): 1-30.

Yadav, S. and Jha, R. (2019). Strategies to modulate the intestinal microbiota and their effects on nutrient utilization, performance, and health of poultry. Journal of Animal Science and Biotechnology. (10): 1-11.

Yeoman, C. J., Chia, N., Jeraldo, P., Sipos, M., Goldenfeld, N. D., and White, B. A. (2012). The microbiome of the chicken gastrointestinal tract. In Animal health research reviews/Conference of Research Workers in Animal Diseases. (13): 89-99.

Yuan, L., Hensley, C., Mahsoub, H. M., Ramesh, A. K., and Zhou, P. (2020). Microbiota in viral infection and disease in humans and farm animals. Progress in Molecular Biology and Translational Science. (171): 15-60.

Publicado

2023-12-08

Cómo citar

Alvarado-López, J. E., & Hernández, E. (2023). La importancia de la microbiota intestinal en la fisiología y rendimiento de pollos de engorda y gallinas de postura. CienciaUAT, 18(2), 155–169. https://doi.org/10.29059/cienciauat.v18i2.1795

Número

Sección

Biotecnología y Ciencias Agropecuarias

Artículos similares

<< < 9 10 11 12 13 14 15 16 17 18 > >> 

También puede Iniciar una búsqueda de similitud avanzada para este artículo.