Las nanoestructuras de ZnO y sus aplicaciones como sensor de gas H2S

Autores/as

  • Claudio Martínez-Pacheco Universidad Juárez Autónoma de Tabasco, División Académica de Ingeniería y Arquitectura, avenida Universidad s/n, Zona de la Cultura, colonia Magisterial, Villahermosa, Tabasco, México, C. P. 86040. https://orcid.org/0000-0002-5311-7398
  • Ebelia Del-Ángel-Meraz Universidad Juárez Autónoma de Tabasco, División Académica de Ingeniería y Arquitectura, avenida Universidad s/n, Zona de la Cultura, colonia Magisterial, Villahermosa, Tabasco, México, C. P. 86040. http://orcid.org/0000-0002-6567-4263
  • Laura Lorena Díaz-Flores Universidad Juárez Autónoma de Tabasco, División Académica de Ingeniería y Arquitectura, avenida Universidad s/n, Zona de la Cultura, colonia Magisterial, Villahermosa, Tabasco, México, C. P. 86040. https://orcid.org/0000-0002-0415-3093

DOI:

https://doi.org/10.29059/cienciauat.v17i2.1632

Palabras clave:

detectores portátiles, sensor, gases tóxicos, nanopartículas

Resumen

Existe un interés global en la detección de gases tóxicos, para la protección del medio ambiente y los seres humanos. Se han desarrollado múltiples estudios enfocados en el uso de sensores de gases basados en óxidos metálicos, como es el óxido de zinc (ZnO), el cual presenta propiedades electrónicas específicas como sensor de gases por ser un semiconductor tipo n y bajo costo de producción. El objetivo de este trabajo fue analizar el uso de nanoestructuras de ZnO, para la fabricación de sensores del gas ácido sulfhídrico (H2S), así como las técnicas de obtención más comunes de dichas estructuras. Las características de las nanoestructuras de óxido de zinc (NE´s-ZnO) varían por efecto del método de obtención, generando diferentes morfologías y tamaño, que impactan en la capacidad de detección de gas (0.5 ppm a 600 ppm) y en el rango de temperatura que se requiere. Los avances en la generación de diversas NE´s-ZnO facilitarán la posibilidad de generar sensores que puedan ser utilizados en detectores portátiles y operen a temperatura ambiente, lo cual es un reto actual.

Biografía del autor/a

Claudio Martínez-Pacheco, Universidad Juárez Autónoma de Tabasco, División Académica de Ingeniería y Arquitectura, avenida Universidad s/n, Zona de la Cultura, colonia Magisterial, Villahermosa, Tabasco, México, C. P. 86040.

Estudiante del Doctorado en Ciencias en Ingeniería. Universidad Juárez Autónoma de Tabasco. División Académica de Ingeniería y Arquitectura. Avenida Universidad s/n Zona de la Cultura, Colonia Magisterial, CP 86690, Villahermosa Centro, Tabasco, México. CVU: 946800

Ebelia Del-Ángel-Meraz, Universidad Juárez Autónoma de Tabasco, División Académica de Ingeniería y Arquitectura, avenida Universidad s/n, Zona de la Cultura, colonia Magisterial, Villahermosa, Tabasco, México, C. P. 86040.

Profesora Investigadora. Universidad Juárez Autónoma de Tabasco. División Académica de Ingeniería y Arquitectura. Avenida Universidad s/n Zona de la Cultura, Colonia Magisterial, CP 86690, Villahermosa Centro, Tabasco, México. CVU: 202225.

Laura Lorena Díaz-Flores, Universidad Juárez Autónoma de Tabasco, División Académica de Ingeniería y Arquitectura, avenida Universidad s/n, Zona de la Cultura, colonia Magisterial, Villahermosa, Tabasco, México, C. P. 86040.

Profesora Investigadora. Universidad Juárez Autónoma de Tabasco. División Académica de Ingeniería y Arquitectura. Avenida Universidad s/n Zona de la Cultura, Colonia Magisterial.

Citas

Abdallah, B., Kakhia, M., and Obaide, A. (2021). Morphological and Structural Studies of ZnO Nanotube Films Using Thermal Evaporation Technique. Plasmonics. 16(5): 1549-1556. DOI: https://doi.org/10.1007/s11468-021-01420-x

Akbari-Saatlu, M., Procek, M., Mattsson, C., Thungström, G., Törndahl, T., Li, B., ..., and Radamson, H. H. (2022). Nanometer-Thick ZnO/SnO2 Heterostructures Grown on Alumina for H2S Sensing. ACS Applied Nano Materials. 5(5): 6954-6963. DOI: https://doi.org/10.1021/acsanm.2c00940

Akgul, G. and Akgul, F. A. (2022). Impact of cobalt doping on structural and magnetic properties of zinc oxide nanocomposites synthesized by mechanical ball-milling method. Colloids and Inter-face Science Communications. 48: 100611. DOI: https://doi.org/10.1016/j.colcom.2022.100611

Al-Baroot, A., Alheshibri, M., Drmosh, Q. A., Akhtar, S., Kotb, E., and Elsayed, K. A. (2022). A novel approach for fabrication ZnO/CuO nanocomposite via laser ablation in liquid and its antibacterial activity: A novel approach for fabrication ZnO/CuO nanocomposite. Arabian Journal of Chemistry. 15(2): 103606. DOI: https://doi.org/10.1016/j.arabjc.2021.103606

Bhati, V. S., Hojamberdiev, M., and Kumar, M. (2020). Enhanced sensing performance of ZnO nanostructures-based gas sensors: A review. Energy Reports. 6: 46-62. DOI: https://doi.org/10.1016/j.egyr.2019.08.070

Chen, Y., Xu, P., Xu, T., Zheng, D., and Li, X. (2017). ZnO-nanowire size effect induced ultra-high sensing response to ppb-level H2S. Sensors and Actuators, B: Chemical. 240: 264-272. DOI: https://doi.org/10.1016/j.snb.2016.08.120

Comini, E. and Zappa, D. (2019). One- and two-dimensional metal oxide nanostructures for chemical sensing. In R. Jaaniso and O. K. Tan (Eds.), Semiconductor Gas Sensors (pp. 161-184). United States: Woodhead Publishing. DOI: https://doi.org/10.1016/B978-0-08-102559-8.00005-7

Dadkhah, M. and Tulliani, J. M. (2022). Green Synthesis of Metal Oxides Semiconductors for Gas Sensing Applications. Sensors. 22: 4669. DOI: https://doi.org/10.3390/s22134669

Dey, A. (2018). Semiconductor metal oxide gas sensors: A review. Materials Science and Engineering: B. 229: 206-217. DOI: https://doi.org/10.1016/j.mseb.2017.12.036

Ding, P., Xu, D., Dong, N., Chen, Y., Xu, P., Zheng, D., and Li, X. (2020). A high-sensitivity H2S gas sensor based on optimized ZnO-ZnS nano-heterojunction sensing material. Chinese Chemical Letters. 31(8): 2050-2054. DOI: https://doi.org/10.1016/j.cclet.2019.11.024

Duoc, V. T., Le, D. T. T., Hoa, N. D., Van-Duy, N., Hung, C. M., Nguyen, H., and Van-Hieu, N. (2019). New Design of ZnO Nanorod-and Nanowire-Based NO2 Room-Temperature Sensors Prepared by Hydrothermal Method. Journal of Nanomaterials. 2019: 6821937. DOI: https://doi.org/10.1155/2019/6821937

Es-Haghi, A., Taghavizadeh-Yazdi, M. E., Sharifal-hoseini, M., Baghani, M., Yousefi, E., Rahdar, A., and Baino, F. (2021). Application of response surface methodology for optimizing the therapeutic activity of zno nanoparticles biosynthesized from aspergillus niger. Biomimetics. 6(2): 34. DOI: https://doi.org/10.3390/biomimetics6020034

Fan, C., Sun, F., Wang, X., Majidi, M., Huang, Z., Kumar, P., and Liu, B. (2020). Enhanced H2S gas sensing properties by the optimization of p-CuO/n-ZnO composite nanofibers. Journal of Materials Science. 55(18): 7702-7714. DOI: https://doi.org/10.1007/s10853-020-04569-8

Fazio, E., Spadaro, S., Corsaro, C., Neri, G., Leonardi, S. G., Neri, F., …, and Neri, G. (2021). Metal-oxide based nanomaterials: Synthesis, characterization and their applications in electrical and electrochemical sensors. Sensors. 21(7): 2494. DOI: https://doi.org/10.3390/s21072494

Galstyan, V., Poli, N., and Comini, E. (2019). Highly Sensitive and Selective H2S Chemical Sensor Based on ZnO Nanomaterial. Applied Sciences. 9(6): 1167. DOI: https://doi.org/10.3390/app9061167

García-Salinas, F., Vázquez-Durán, A., and Yáñez-Limón, J. M. (2021). Comparative study of Al-doped ZnO films deposited by sol–gel and by sputtering using a sintered target from ZnO nanoparticles synthesized by sol–gel. Boletin de La Sociedad Espanola de Ceramica y Vidrio. 317: 11.

Gorup, L. F., Amorin, L. H., Camargo, E. R., Sequinel, T., Cincotto, F. H., Biasotto, G., …, and La-Porta, F. de A. (2020). Methods for design and fabrication of nanosensors: the case of ZnO-based nanosensor. In B. Han, T. A. Nguyen, P. K. Singh, V. K. Tomer, and A. Farmani (Eds.), Nanosensors for Smart Cities (pp. 9-30). United Kingdom: Elsevier. DOI: https://doi.org/10.1016/B978-0-12-819870-4.00002-5

Hieu, N. M., Van-Lam, D., Hien, T. T., Chinh, N. D., Quang, N. D., Hung, N. M., …, and Kim, D. (2020). ZnTe-coated ZnO nanorods: Hydrogen sulfide nano-sensor purely controlled by pn junction. Materials and Design. 191: 108628. DOI: https://doi.org/10.1016/j.matdes.2020.108628

Hsu, K. C., Fang, T. H., Hsiao, Y. J., and Li, Z. J. (2021). Rapid detection of low concentrations of H2S using CuO-doped ZnO nanofibers. Journal of Alloys and Compounds. 852: 157014. DOI: https://doi.org/10.1016/j.jallcom.2020.157014

Hung, C. M., Phuong, H. V., Van-Thinh, V., Hong, L. T., Thang, N. T., Hanh, N. H., …, and Hoa, N. D. (2021). Au doped ZnO/SnO2 composite nanofibers for enhanced H2S gas sensing performance. Sensors and Actuators, A: Physical. 317: 112454. DOI: https://doi.org/10.1016/j.sna.2020.112454

Izawa, K., Ulmer, H., Staerz, A., Weimar, U., and Barsan, N. (2018). Application of SMOX-based sensors. In N. Barsan and K. Schierbaum (Eds.), Gas Sensors Based on Conducting Metal Oxides: Basic Understanding, Technology and Applications (pp. 217-257). United Kingdom: Elsevier. DOI: https://doi.org/10.1016/B978-0-12-811224-3.00005-6

Jain, D., Bhojiya, A. A., Singh, H., Daima, H. K., Singh, M., Mohanty, S. R., ..., and Singh, A. (2020). Microbial Fabrication of Zinc Oxide Nanoparticles and Evaluation of Their Antimicrobial and Photocatalytic Properties. Frontiers in Chemistry. 8: 778. DOI: https://doi.org/10.3389/fchem.2020.00778

Kamalianfar, A., Naseri, M. G., and Jahromi, S. P. (2019). Preparation and gas-sensing performances of Cr2O3-decorated ZnO nanostructures grown in a boundary layer of non-uniform thickness for low-working temperature H2S detection. Chemical Physics Letters. 732: 136648. DOI: https://doi.org/10.1016/j.cplett.2019.136648

Kashif, M., Fiaz, M., and Athar, M. (2021). One-step hydrothermal synthesis of ZnO nanorods as efficient oxygen evolution reaction catalyst. Inorganic and Nano-Metal Chemistry. 52(1): 101-107. DOI: https://doi.org/10.1080/24701556.2020.1862223

Kaur, M., Kailasaganapathi, S., Ramgir, N., Datta, N., Kumar, S., Debnath, A. K., …, and Gupta, S. K. (2017). Gas dependent sensing mechanism in ZnO nanobelt sensor. Applied Surface Science. 394: 258-266. DOI: https://doi.org/10.1016/j.apsusc.2016.10.085

Kaur, N., Singh, M., and Comini, E. (2020). 1-D Nanostructured Oxide Chemoresistive Sensors. Langmuir. 36(23): 6326-6344. DOI: https://doi.org/10.1021/acs.langmuir.0c00701

Kaya, S., Ozturk, O., and Arda, L. (2020). Roughness and bearing analysis of ZnO nanorods. Ceramics International. 46(10): 15183-15196. DOI: https://doi.org/10.1016/j.ceramint.2020.03.055

Kolhe, P. S., Shinde, A. B., Kulkarni, S. G., Maiti, N., Koinkar, P. M., and Sonawane, K. M. (2018). Gas sensing performance of Al doped ZnO thin film for H2S detection. Journal of Alloys and Compounds. 748: 6-11. DOI: https://doi.org/10.1016/j.jallcom.2018.03.123

Korotcenkov, G. (2020). Current trends in nanomaterials for metal oxide-based conductometric gas sensors: Advantages and limitations. part 1: 1D and 2D nanostructures. Nanomaterials. 10(7): 1392. DOI: https://doi.org/10.3390/nano10071392

Król, A., Pomastowski, P., Rafińska, K., Railean-Plugaru, V., and Buszewski, B. (2017). Zinc oxide nanoparticles: Synthesis, antiseptic activity and toxicity mechanism. Advances in Colloid and Interface Science. 249: 37-52. DOI: https://doi.org/10.1016/j.cis.2017.07.033

Kumar, S., Bhushan, P., and Bhattacharya, S. (2018). Fabrication of Nanostructures with Bottom-up Approach and Their Utility in Diagnostics, Therapeutics, and Others. In S. Bhattacharya, A. K. Agarwal, N. Chanda, A. Pandey, and A. K. Sen (Eds.), Environmental, Chemical and Medical Sensors (pp. 167-198). Singapore: Springer. DOI: https://doi.org/10.1007/978-981-10-7751-7_8

Li, D., Qin, L., Zhao, P., Zhang, Y., Liu, D., Liu, F., …, and Lu, G. (2018). Preparation and gas-sensing performances of ZnO/CuO rough nanotubular arrays for low-working temperature H2S detection. Sensors and Actuators, B: Chemical. 254: 834-841. DOI: https://doi.org/10.1016/j.snb.2017.06.110

Li, Z., Li, H., Wu, Z., Wang, M., Luo, J., Torun, H., …, and Fu, Y. (2019). Advances in designs and mechanisms of semiconducting metal oxide nanostructures for high-precision gas sensors operated at room temperature. Materials Horizons. 6(3): 470-506. DOI: https://doi.org/10.1039/C8MH01365A

Llobet, E., Brunet, J., Pauly, A., Ndiaye, A., and Varenne, C. (2017). Nanomaterials for the Selective Detection of Hydrogen Sulfide in Air. Sensors. 17(2): 391. DOI: https://doi.org/10.3390/s17020391

Mahajan, S. and Jagtap, S. (2021). Nanomaterials-Based Resistive Sensors for Detection of Environ-mentally Hazardous H2S Gas. Journal of Electronic Materials. 50(5): 2531-2555. DOI: https://doi.org/10.1007/s11664-021-08761-7

Mazitova, G. T., Kienskaya, K. I., Ivanova, D. A., Belova, I. A., Butorova, I. A., and Sardushkin, M. V. (2019). Synthesis and Properties of Zinc Oxide Nanoparticles: Advances and Prospects. Review Journal of Chemistry. 9(2): 127-152. DOI: https://doi.org/10.1134/S207997801902002X

Mirzaei, A., Kim, S. S., and Kim, H. W. (2018). Resistance-based H2S gas sensors using metal oxide nanostructures: A review of recent advances. Journal of Hazardous Materials. 357: 314-331. DOI: https://doi.org/10.1016/j.jhazmat.2018.06.015

Mirzaei, A., Lee, J. H., Majhi, S. M., Weber, M., Bechelany, M., Kim, H. W., and Kim, S. S. (2019). Resistive gas sensors based on metal-oxide nanowires. Journal of Applied Physics. 126(24): 241102. DOI: https://doi.org/10.1063/1.5118805

Motazedi, R., Rahaiee, S., and Zare, M. (2020). Efficient biogenesis of ZnO nanoparticles using extracellular extract of Saccharomyces cerevisiae: Evaluation of photocatalytic, cytotoxic and other biological activities. Bioorganic Chemistry. 101: 103998. DOI: https://doi.org/10.1016/j.bioorg.2020.103998

Nikolic, M. V., Milovanovic, V., Vasiljevic, Z. Z., and Stamenkovic, Z. (2020). Semiconductor gas sensors: Materials, technology, design, and application. Sensors. 20(22): 1-31. DOI: https://doi.org/10.3390/s20226694

Nunes, D., Pimentel, A., Santos, L., Barquinha, P., Pereira, L., Fortunato, E., and Martins, R. (2019a). Structural, optical, and electronic properties of metal oxide nanostructures. In G. Korotcenkov (Ed.), Metal Oxide Nanostructures (pp. 59-102). United Kingdom: Elsevier. DOI: https://doi.org/10.1016/B978-0-12-811512-1.00003-5

Nunes, D., Pimentel, A., Santos, L., Barquinha, P., Pereira, L., Fortunato, E., and Martins, R. (2019b). Synthesis, design, and morphology of metal oxide nanostructures. In G. Korotcenkov (Ed.), Metal Oxide Nanostructures (pp. 21-57). United Kingdom: Elsevier. DOI: https://doi.org/10.1016/B978-0-12-811512-1.00002-3

Nurfani, E., Kadja, G. T. M., Purbayanto, M. A. K., and Darma, Y. (2020). The role of substrate temperature on defects, electronic transitions, and dark current behavior of ZnO films fabricated by spray technique. Materials Chemistry and Physics. 239: 122065. DOI: https://doi.org/10.1016/j.matchemphys.2019.122065

Patel, M., Mishra, S., Verma, R., and Shikha, D. (2022). Synthesis of ZnO and CuO nanoparticles via Sol gel method and its characterization by using various technique. Discover Materials. 2(1): 1. DOI: https://doi.org/10.1007/s43939-022-00022-6

Patil, Y., Pedhekar, R. B., Patil, S., and Raghuwanshi, F. C. (2020). Thick film gas sensors made from Mn doped zinc oxide nanorods for H2S gas. Materials Today: Proceedings. 28: 1865-1871. DOI: https://doi.org/10.1016/j.matpr.2020.05.293

Ponja, S. D., Sathasivam, S., Parkin, I. P., and Carmalt, C. J. (2020). Highly conductive and transparent gallium doped zinc oxide thin films via chemical vapor deposition. Scientific Reports. 10(1): 1-7. DOI: https://doi.org/10.1038/s41598-020-57532-7

Rezaie, M. N., Mohammadnejad, S., and Ahadzadeh, S. (2022). The impact of ZnO nanotube on the performance of hybrid inorganic/organic lightemitting diode as a single-mode ring-core UV waveguide. Surfaces and Interfaces. 28: 101666. DOI: https://doi.org/10.1016/j.surfin.2021.101666

Shao, S., Chen, X., Chen, Y., Zhang, L., Kim, H. W., and Kim, S. S. (2020). ZnO Nanosheets Modified with Graphene Quantum Dots and SnO2 Quantum Nanoparticles for Room-Temperature H2S Sensing. ACS Applied Nano Materials. 3(6): 5220-5230. DOI: https://doi.org/10.1021/acsanm.0c00642

Shewale, P. S. and Yun, K. S. (2020). Synthesis and characterization of Cu-doped ZnO/RGO nanocomposites for room-temperature H2S gas sensor. Journal of Alloys and Compounds. 837: 155527. DOI: https://doi.org/10.1016/j.jallcom.2020.155527

Skowronski, L., Ciesielski, A., Olszewska, A., Szczesny, R., Naparty, M., Trzcinski, M., and Bukaluk, A. (2020). Microstructure and optical properties of E-beam evaporated zinc oxide films-effects of decomposition and surface desorption. Materials. 13(16): 3510. DOI: https://doi.org/10.3390/ma13163510

Soni, A., Mulchandani, K., and Mavani, K. R. (2020). Effects of substrates on the crystalline growth and UV photosensitivity of glancing angle deposited porous ZnO nanostructures. Sensors and Actuators, A: Physical. 313: 112140. DOI: https://doi.org/10.1016/j.sna.2020.112140

Sun, M., Yu, H., Dong, X., Xia, L., and Yang, Y. (2020). Sedum lineare flower-like ordered mesoporous In2O3/ZnO gas sensing materials with high sensitive response to H2S at room temperature prepared by self-assembled of 2D nanosheets. Journal of Alloys and Compounds. 844: 156170. DOI: https://doi.org/10.1016/j.jallcom.2020.156170

Taghizadeh, S. M., Lal, N., Ebrahiminezhad, A., Moeini, F., Seifan, M., Ghasemi, Y., and Berenjian, A. (2020). Green and Economic Fabrication of Zinc Oxide (ZnO) Nanorods as a Broadband UV Blocker and Antimicrobial Agent. Nanomaterials. 10(3): 530. DOI: https://doi.org/10.3390/nano10030530

Tripathy, N. and Kim, D. H. (2018). Metal oxide modified ZnO nanomaterials for biosensor applications. Nano Convergence. 5(1): 1-10. DOI: https://doi.org/10.1186/s40580-018-0159-9

Viter, R. and Iatsunskyi, I. (2019). Metal Oxide Nanostructures in Sensing. In O. V. Zenkina (Ed.), Nanomaterials Design for Sensing Applications (pp. 41-91). Netherlands: Elsevier. DOI: https://doi.org/10.1016/B978-0-12-814505-0.00002-3

Wang, C., Wang, L. J., Zhang, L., Xi, R., Huang, H., Zhang, S. H., and Pan, G. B. (2019a). Electrodeposition of ZnO nanorods onto GaN towards enhanced H2S sensing. Journal of Alloys and Compounds. 790: 363-369. DOI: https://doi.org/10.1016/j.jallcom.2019.03.084

Wang, M., Luo, Q., Hussain, S., Liu, G., Qiao, G., and Kim, E. J. (2019b). Sharply-precipitated spherical assembly of ZnO nanosheets for low temperature H2S gas sensing performances. Materials cience in SemiconductorProcessing. 100: 283-289. DOI: https://doi.org/10.1016/j.mssp.2019.05.020

Yamazoe, N. and Shimanoe, K. (2019). Fundamentals of semiconductor gas sensors. In R. Jaaniso and O. K. Tan (Eds.), Semiconductor Gas Sensors (pp. 3-38). United States: Woodhead Publishing. DOI: https://doi.org/10.1016/B978-0-08-102559-8.00001-X

Yang, J. H., Yuan, K. P., Zhu, L. Y., Hang, C. Z., Li, X. X., Tao, J. J., …, and Lu, H. L. (2020). Facile synthesis of a-Fe2O3/ZnO core-shell nanowires for enhanced H2S sensing. Sensors and Actuators, B: Chemical. 307: 127617. DOI: https://doi.org/10.1016/j.snb.2019.127617

Yu, Z., Gao, J., Xu, L., Liu, T., Liu, Y., Wang, X., ..., and Zhao, C. (2020). Fabrication of Lettuce-Like ZnO Gas Sensor with Enhanced H2S Gas Sensitivity. Crystals. 10(3): 145. DOI: https://doi.org/10.3390/cryst10030145

Zhang, D., Fan, X., Hao, X., and Dong, G. (2019). Facile Fabrication of Polyaniline Nanocapsule Modified Zinc Oxide Hexagonal Microdiscs for H2S Gas Sensing Applications. Industrial& Engineering Chemistry Research. 58(5): 1906-1913. DOI: https://doi.org/10.1021/acs.iecr.8b04869

Zhu, L. and Zeng, W. (2017). Room-temperature gas sensing of ZnO-based gas sensor: A review. In Sensors and Actuators, A: Physical. 267: 242-261. DOI: https://doi.org/10.1016/j.sna.2017.10.021

Publicado

2023-01-26

Cómo citar

Martínez-Pacheco, C., Del-Ángel-Meraz, E., & Díaz-Flores, L. L. (2023). Las nanoestructuras de ZnO y sus aplicaciones como sensor de gas H2S. CienciaUAT, 17(2), 24–36. https://doi.org/10.29059/cienciauat.v17i2.1632

Número

Sección

Física, Matemáticas y Ciencias de la Tierra

Artículos similares

1 2 3 4 5 > >> 

También puede Iniciar una búsqueda de similitud avanzada para este artículo.