Efecto de la adición de harinas no convencionales y reducción del contenido de sodio en productos reestructurados de macabil (Albula vulpes)

Autores/as

  • Gabriela Nallely Trejo-Díaz Universidad de Ciencias y Artes de Chiapas, Facultad de Ciencias de la Nutrición y Alimentos, Laboratorio de Alimentación Sustentable, Cd. Tuxtla Gutiérrez, Chiapas, México. https://orcid.org/0000-0002-2424-4275
  • Eduardo Morales-Sánchez Centro de Investigación en Ciencia Aplicada y Tecnología Avanzada, Unidad Querétaro, Querétaro, México.
  • Miguel Ángel Martínez-Maldonado Tecnológico Nacional de México, Instituto Tecnológico Superior de Huichapan, División de Gastronomía, domicilio conocido s/n, colonia El Saucillo, Huichapan, Hidalgo, México, C. P. 42411.

DOI:

https://doi.org/10.29059/cienciauat.v18i2.1799

Palabras clave:

productos pesqueros reestructurados, macabil, gelificación, harina de amaranto, Harina de grillo

Resumen

Los productos acuáticos reestructurados se procesan principalmente a partir de especies de pescado infravaloradas, recortes de filetes o subproductos de especies de pescado no comerciales. Una de las pesquerías subvaloradas en el sur de México, es la del macabil (Albula vulpes). El objetivo de este estudio fue evaluar el efecto de la adición de harinas no convencionales y la reducción del nivel de cloruro de sodio en las propiedades mecánicas y funcionales de productos reestructurados de macabil. Se elaboraron reestructurados de macabil para analizar las muestras con harina de amaranto (HA) o harina de grillo (HG) doméstico (0 %, 5 % y 10 %) y tres niveles de sal (0 %, 1 % y 2 %). Se evaluó la pérdida de agua por cocción, la cantidad de agua extraíble y la textura de los geles. El uso de ambas harinas no convencionales disminuyó la pérdida de agua por cocción entre un 49.09 % y 61.97 %, con 1 % de sal. La adición de sal redujo el agua extraíble del reestructurado. Los valores de dureza variaron (P < 0.05) entre tratamientos. La mayor dureza se obtuvo en los tratamientos con HA al 10 % y sal al 1 % (64.55 N) y con HG al 10 % y sal al 2 % (63.50 N). La cohesividad varió de 0.53 a 0.71 (adimensional) en los tratamientos con 1 % y 2 % de sal, indicando pocos cambios en la estructura interna por efecto de los aditivos. Las harinas no convencionales permitieron la gelificación proteica, formando reestructurados con propiedades texturales adecuadas para un producto cárnico. La adición del 10 % de HG común o de HA y 1 % de uso de sal, en la formulación de reestructurados de pescado, ofrece una alternativa saludable en el desarrollo de alimentos de pescado.

Citas

Apolo-Aréval, L. y Iannacone, J. (2015). Crianza del grillo (Acheta domesticus) como fuente alternatica de proteínas para el consumo humano. Scientia. 17(17): 161-173.

Arévalo-Arévalo, H., Vernot, D. y Barragán-Fonseca, K. (2022). Perspectivas de uso sostenible del grillo doméstico tropical (Gryllodes sigillatus) para la alimentación humana en Colombia. Revista de la Facultad de Medicina Veterinaria y de Zootecnia. 69(3): 310-324.

Avanza, M. V., Puppo, M. C., and Añón, M. C. (2005). Structural characterization of amaranth protein gels. Journal of Food Science. 70(3): E223-E229.

Avendaño, C., Sánchez, M., Valenzuela, C., Avendaño, C., Sánchez, M. y Valenzuela, C. (2020). Insectos: son realmente una alternativa para la alimentación de animales y humanos. Revista Chilena de Nutrición. 47(6): 1029-1037.

Bresciani, A., Cardone, G., Jucker, C., Savoldelli, S., and Marti, A. (2022). Technological Performance of Cricket Powder (Acheta domesticus L.) in Wheat-Based Formulations. Insects. 13(6): 546.

Çabuk, B. and Yılmaz, B. (2020). Fortification of traditional egg pasta (erişte) with edible insects: Nutritional quality, cooking properties and sensory characteristics evaluation. Journal of Food Science and Technology. 57: 2750-2757.

Cappelli, A., Oliva, N., Bonaccorsi, G., Lorini, C., and Cini, E. (2020). Assessment of the rheological properties and bread characteristics obtained by innovative protein sources (Cicer arietinum, Acheta domesticus, Tenebrio molitor): Novel food or potential improvers for wheat flour? LWT. 118: 108867.

Chiesa, I. L., Sciocia, G., Leal, M. y Seco-Pon, J. P. (2019). Residuos en ambientes marinos.: Un problema global y también fueguino. La Lupa. Colección Fueguina de Divulgación Científica. (15): 2-7.

Coțovanu, I., Stroe, S. G., Ursachi, F., and Mironeasa, S. (2023). Addition of amaranth flour of different particle sizes at established doses in wheat flour to achieve a nutritional improved wheat bread. Foods. 12(1): 133.

Debusca, A., Tahergorabi, R., Beamer, S. K., Matak, K. E., and Jaczynski, J. (2014). Physicochemical properties of surimi gels fortified with dietary fiber. Food Chemistry. 148: 70-76.

Dini, C., García, M. A., and Viña, S. Z. (2012). Non-traditional flours: frontiers between ancestral heritage and innovation. Food & Function. 3(6): 606-620.

Ding, Y., Liu, Y., Yang, H., Liu, R., Rong, J., Zhao, S., and Xiong, S. (2011). Effects of CaCl2 on chemical interactions and gel properties of surimi gels from two species of carps. European Food Research and Technology. 233: 569-576.

Dunteman, A. N., McKenzie, E. N., Yang, Y., Lee, Y., and Lee, S. Y. (2022). Compendium of sodium reduction strategies in foods: A scoping review. Comprehensive Reviews in Food Science and Food Safety. 21(2): 1300-1335.

FAO, Food and Agriculture Organization (2021). Looking at edible insects from a food safety perspective. FAO. [En línea]. Disponible en: https://doi.org/10.4060/cb4094en. Fecha de consulta: 8 de abril de 2023.

FAO, Food and Agriculture Organization/FIDA, Fondo Internacional de Desarrollo Agrícola/OMS, Organización Mundial de la Salud/PMA, Programa Mundial de Alimentos/UNICEF, Fondo de las Naciones Unidas para la Infancia (2022). Versión resumida de “El estado de la seguridad alimentaria y la nutrición en el mundo 2022”. Adaptación de las políticas alimentarias y agrícolas para hacer las dietas saludables más asequibles. Roma, FAO. [En línea]. Disponible en: https://doi.org/10.4060/cc0640es. Fecha de consulta: 6 de abril de 2023.

García-Sifuentes, C. O., Scheuren-Acevedo, S. M. y Zamorano-Apodaca, J. C. (2020). Explorando diferentes subproductos considerados como residuos por la industria pesquera en México. Biotecnia. 22(2): 61-69.

Gebreil, S. Y., Ali, M. I. K., and Mousa, E. A. M. (2020). Utilization of amaranth flour in preparation of high nutritional value bakery products. Food and Nutrition Sciences. 11(5): 336-354.

Gentile, L. (2020). Protein–polysaccharide interactions and aggregates in food formulations. Current Opinion in Colloid & Interface Science. 48: 18-27.

Kim, H. W., Setyabrata, D., Lee, Y., Jones, O. G., Kim, and Y. H. B. (2017). Effect of house cricket (Acheta domesticus) flour addition on physicochemical and textural properties of meat emulsion under various formulations. Journal of Food Science. 82(12): 2787-2793.

Kosečková, P., Zvěřina, O., Pěchová, M., Krulíková, M., Duborská, E., and Borkovcová, M. (2022). Mineral profile of cricket powders, some edible insect species and their implication for gastronomy. Journal of Food Composition and Analysis. 107: 104340.

Luperdi, A. Z. N., Soto, M. E. N., Torres, B. P., Celis, H. C. A., and Alomia, L. A. T. (2022). Beneficios ambientales, nutricionales y económicos de la entomofagia en países hispanohablantes en los últimos 15 años: una revisión sistemática de literatura. Revista de Ciencias Sociales y Sostenibilidad. 2(1): 50-65.

Martínez-Maldonado, M. A., Ramírez-De-León, J. A., Méndez-Montealvo, M. G., Morales-Sánchez, E., and Velazquez, G. (2018). Effect of the cooking process on the gelling properties of whole and minced jumbo lump of blue crab (Callinectes sapidus). Journal of Aquatic Food Product Technology. 27(4): 418-429.

Mlček, J., Rop, O., Borkovcova, M., and Bednářová, M. (2014). A comprehensive look at the possibilities of edible insects as food in Europea review. Polish Journal of Food and Nutrition Sciences. 64(3): 147-157.

Morales-Ramos, J. A., Rojas, M. G., Dossey, A. T., and Berhow, M. (2020). Self-selection of food ingredients and agricultural by-products by the house cricket, Acheta domesticus (Orthoptera: Gryllidae): A holistic approach to develop optimized diets. PLoS One. 15(1): e0227400.

Nisov, A., Aisala, H., Holopainen-Mantila, U., Alakomi, H. L., Nordlund, E., and Honkapää, K. (2020). Comparison of whole and gutted baltic herring as a raw material for restructured fish product produced by high-moisture extrusion cooking. Foods. 9(11): 1541.

ONU, Organización de las Naciones Unidas (2022). Informe de los objetivos de desarrollo sostenible 2022. [En línea]. Disponible en: https://unstats.un.org/sdgs/report/2022/The-Sustainable-Development-Goals-Report-2022_Spanish.pdf. Fecha de consulta: 30 de marzo de 2023.

Park, Y. S., Choi, Y. S., Hwang, K. E., Kim, T. K., Lee, C. W., Shin, D. M., and Han, S. G. (2017). Physicochemical properties of meat batter added with edible silkworm pupae (Bombyx mori) and transglutaminase. Korean Journal for Food Science of Animal Resources. 37(3): 351.

Perez, A. U., Schmitter-Soto, J. J., Adams, A. J., Herrera-Pavon, R. L. (2019). Influence of environmental variables on abundance and movement of bonefish (Albula vulpes) in the Caribbean Sea and a tropical estuary of Belize and Mexico. Environmental Biology of Fishes. 102: 1421–1434.

Pickett, B. D., Wallace, E. M., Ridge, P. G., and Kauwe, J. S. (2020). Lingering taxonomic challenges hinder conservation and management of global bone-fishes. Fisheries. 45(7): 347-358.

Pineda, W., Torres, J., Flores, M., Pomares, G., Pérez, A., Ospina, D., Ruiz E., and Montero, L. (2018). Production of Sausage from Macabí Fish Pulp. IJMSOR: International Journal of Management Science & Operation Research. 3(1): 64-68.

Pires, D. R., Jamas, A. L. A., Amorim, E., Azevedo-Meleiro, C. H. D., Silva, P. P. D. O., and Oliveira, G. M. D. (2017). Chemical characterization of marine fish of low-commercial value and development of fish burgers. Pesquisa Agropecuária Brasileira. 52: 1091-1098.

Pulido-Blanco, V. C., González-Chavarro, C. F., Tapia-Polanco, Y. M. y Celis-Ruíz, X. M. (2020). Insectos: Recursos del pasado que podrían ser una solución nutricional para el futuro. Avances en Investigación Agropecuaria. 24(2): 81-100.

Ramírez, J. A., Del-Angel, A., Uresti, R. M., Velazquez, G., and Vázquez, M. (2007). Low-salt restructured products from striped mullet (Mugil cephalus) using microbial transglutaminase or whey protein concentrate as additives. Food Chemistry. 102(1): 243-249.

Ramírez, J. A., Uresti, R. M., Velazquez, G., and Vázquez, M. (2011). Food hydrocolloids as additives to improve the mechanical and functional properties of fish products: A review. Food Hydrocolloids. 25(8): 1842-1852.

Reader, G. T. (2023). Access to Drinking Water, Food Security and Adequate Housing: Challenges for Engineering, Past, Present and Future. In D. SK., Ting, and A. Vasel-Be-Hagh (Eds.), Responsible Engineering and Living. REAL 2022. Springer Proceedings in Energy. Springer.

Ramos, M., Santos, R., Beldarrain, T., Nuñez-De-Villavicencio, M., De-Hombre, R. y Rodríguez, F. (2021). Productos reestructurados y envasados al vacío. Ciencia y Tecnología de Alimentos. 31(2): 11-19.

Rojas-Rivas, E., Espinoza-Ortega, A. y Thomé-Ortiz, H. (2020). Consumo e intención de compra de amaranto (Amaranthus sp.) en México; un grano ancestral con propiedades funcionales. Agro Productividad. 13(3).

Sasidharan, A. and Venugopal, V. (2020). Proteins and co-products from seafood processing discards: Their recovery, functional properties and applications. Waste and Biomass Valorization. 11: 5647-5663.

Severini, C., Azzollini, D., Albenzio, M., and Derossi, A. (2018). On printability, quality and nutritional properties of 3D printed cereal based snacks enriched with edible insects. Food Research International. 106: 666-676.

Shevkani, K., Singh, N., Rana, J. C., and Kaur, A. (2014). Relationship between physicochemical and functional properties of amaranth (A maranthus hypochondriacus) protein isolates. International Journal of Food Science & Technology. 49(2): 541-550.

Somjid, P., Panpipat, W., Cheong, L. Z., and Chaijan, M. (2022). Comparative effect of cricket protein powder and soy protein isolate on gel properties of indian mackerel surimi. Foods. 11(21): 3445.

Sun, Y., Ma, L., Ma, M., Zheng, H., Zhang, X., Cai, L., …, and Zhang, Y. (2018). Texture characteristics of chilled prepared Mandarin fish (Siniperca chuatsi) during storage. International Journal of Food Properties. 21(1): 242-254.

Tafadzwa, M. J., Zvamaziva, J. T., Charles, M., Amiel, M., Pepukai, M., and Shepherd, M. (2021). Proximate, physico-chemical, functional and sensory properties OF quinoa and amaranth flour AS potential binders in beef sausages. Food Chem. 365: 130619.

Tripathi, A. D., Mishra, R., Maurya, K. K., Singh, R. B., and Wilson, D. W. (2019). Estimates for world population and global food availability for global health. In R. B. Singh, R. R. Watson, and T. Takahashi (Eds.), The role of functional food security in global health (pp. 3-24). Academic Press.

Tokay, F. G., Alp, A. C., and Yerlikaya, P. (2021). Production and shelf life of restructured fish meat binded by microbial transglutaminase. LWT. 152: 112369.

Urrejola, J. (2019). México: El país líder de la revolución insectívora. DW (Deutsche Welle). Actualidad: Ciencia y Ecología. [En línea]. Disponible en: https://www.dw.com/es/m%C3%A9xico-elpa%C3%ADs-l%C3%ADder-de-la-revoluci%C3%B3n-insect%C3%ADvora/a-50855360. Fecha de consulta: 16 de junio de 2023.

Valdespino-Sahagún, F. (2020). Aprovechamiento sostenible de hongos comestibles; hacia una seguridad alimentaria. Meio Ambiente. 2(5): 45-55.

Velazquez, G., Méndez-Montealvo, M. G., Welti-Chanes, J., Ramírez, J. A., and Martínez-Maldonado, M. A. (2021). Effect of high pressure processing and heat treatment on the gelation properties of blue crab meat proteins. LWT. 146: 111389.

Verma, A. K., Rajkumar, V., and Kumar, S. (2019). Effect of amaranth and quinoa seed flour on rheological and physicochemical properties of goat meat nuggets. Journal of food Science and Technology. 56: 5027-5035.

Zheng, H., Beamer, S. K., Matak, K. E., and Jaczynski, J. (2019). Effect of k-carrageenan on gelation and gel characteristics of Antarctic krill (Euphausia superba) protein isolated with isoelectric solubilization/precipitation. Food chemistry. 278: 644-652.

Publicado

2023-11-01

Cómo citar

Trejo-Díaz, G. N., Morales-Sánchez, E., & Martínez-Maldonado, M. Ángel. (2023). Efecto de la adición de harinas no convencionales y reducción del contenido de sodio en productos reestructurados de macabil (Albula vulpes). CienciaUAT, 18(2), 122–135. https://doi.org/10.29059/cienciauat.v18i2.1799

Número

Sección

Biotecnología y Ciencias Agropecuarias

Artículos más leídos del mismo autor/a

Artículos similares

<< < 4 5 6 7 8 9 10 11 12 > >> 

También puede Iniciar una búsqueda de similitud avanzada para este artículo.