Organogels as lipid profile improvers in meat and dairy matrices

Authors

  • Mayela García-Andrade Tecnológico Nacional de México-Instituto Tecnológico de Durango, Unidad de Posgrado, Investigación y Desarrollo Tecnológico (UPIDET), Dpto. de Ingenierías Química y Bioquímica, Blvd. Felipe Pescador núm. 1830 Ote., col. Nueva Vizcaya, Durango, Durango, México, C. P. 34080.
  • José Alberto Gallegos-Infante Tecnológico Nacional de México-Instituto Tecnológico de Durango, Unidad de Posgrado, Investigación y Desarrollo Tecnológico (UPIDET), Dpto. de Ingenierías Química y Bioquímica, Blvd. Felipe Pescador núm. 1830 Ote., col. Nueva Vizcaya, Durango, Durango, México, C. P. 34080.
  • Rubén Francisco González-Laredo Tecnológico Nacional de México-Instituto Tecnológico de Durango, Unidad de Posgrado, Investigación y Desarrollo Tecnológico (UPIDET), Dpto. de Ingenierías Química y Bioquímica, Blvd. Felipe Pescador núm. 1830 Ote., col. Nueva Vizcaya, Durango, Durango, México, C. P. 34080.

DOI:

https://doi.org/10.29059/cienciauat.v14i1.1129

Keywords:

organogel, substitution, saturated fat, food

Abstract

The structuring of edible oils, through organogelation, has a promising potential in food applications, when used as substitutes for saturated fat in some meat and dairy products of high consumption demand, in order to improve their lipid profile. Organogels are viable for this substitution, which is related to the nutritional improvement demanded by the current consumer, due to the negative effect of saturated fats on health. The objective of this review was to analyze different formulations of organogels, applied in meat-dairy matrices and their impact on the final properties of such food products, implemented as a substitute for saturated fat. The findings indicate that the replacement of saturated fat, by this type of materials, mainly affects the physicochemical properties, modifies the original flavor of the food and improves its lipid profile; However, they still do not meet the expectations of the final consumer due to the unique qualities of solid fat, which represents the main barrier to overcome for its application in an industrial scale production and sale to the market. It is necessary to develop new formulations, similar to those qualities, to achieve  consumer  acceptance.

Author Biography

Mayela García-Andrade, Tecnológico Nacional de México-Instituto Tecnológico de Durango, Unidad de Posgrado, Investigación y Desarrollo Tecnológico (UPIDET), Dpto. de Ingenierías Química y Bioquímica, Blvd. Felipe Pescador núm. 1830 Ote., col. Nueva Vizcaya, Durango, Durango, México, C. P. 34080.

Estudiante de Doctorado 

Doctorado en Ciencias en Ingeniería Bioquímica 

Unidad de Posgrado, Investigación y Desarrollo Tecnológico UPIDET

Instituto Tecnológico de Durango 

References

Alejandre, M., Poyato, C., Ansorena, D., and Astiasarán, I. (2016). Linseed oil gelled emulsion: A successful fat replacer in dry fermented sausages. Meat Science. 121: 107-113. DOI: https://doi.org/10.1016/j.meatsci.2016.05.010

ANSES, Agencia Nacional de Seguridad Sanitaria (2008). Agence Nationale de Sécurité Sanitaire. [En línea]. Disponible en: http://www.anses.fr/TableCIQUAL/index.htm. Fecha de consulta: 16 de febrero de 2012.

Banupriya, S., Elango, A., Karthikeyan, N., and Kathirvelan, C. (2016). Physico chemical characteristics of dietetic ice cream developed by with sunflower oil rice bran wax organogel. Indian Journal of Science and Technology. 9(32): 32-35. DOI: https://doi.org/10.17485/ijst/2016/v9i32/90771

Barbut, S., Wood, J., and Marangoni, A. (2016a). Potential use of organogels to replace animal fat in comminuted meat products. Meat Science. 122: 155-162. DOI: https://doi.org/10.1016/j.meatsci.2016.08.003

Barbut, S., Wood, J., and Marangoni, A. (2016b). Quality effects of using organogels in breakfast sausage. Meat Science. 122: 84-89. DOI: https://doi.org/10.1016/j.meatsci.2016.07.022

Barbut, S., Wood, J., and Marangoni, A. (2016c). Effects of organogel hardness and formulation on acceptance of Frankfurters. Journal of Food Science. 81(9): 2183-2188. DOI: https://doi.org/10.1111/1750-3841.13409

Bemer, H., Limbaugh, M., Cramer, E., Harper, W., and Maleky, F. (2016). Vegetable organogels incorporation in cream cheese products. Food Research International. 85: 67-75. DOI: https://doi.org/10.1016/j.foodres.2016.04.016

Bier, D. (2015). Saturated fats and cardiovascular disease: Interpretations not as simple as they once were. Critical Reviews in Food Science and Nutrition. 56(12): 1943-1946. DOI: https://doi.org/10.1080/10408398.2014.998332

Bloukas, J., Paneras, E., and Fournitzis, G. (1997). Effect of replacing pork backfat with olive oil on processing and quality characteristics of fermented sausages. Meat Science. 45(2): 133-144. DOI: https://doi.org/10.1016/S0309-1740(96)00113-1

Bot, A., Den-Adel, R., and Roijers, E. (2008). Fibrils of γ-oryzanol + β-sitosterol in edible oil organogels. Journal of the American Oil Chemists’ Society. 85(12): 1127-1134. DOI: https://doi.org/10.1007/s11746-008-1298-7

Bot, A., Veldhuizen, Y., den-Adel, R., and Roijers, E. (2009). Non-TAG structuring of edible oils and emulsions. Food Hydrocolloids. 23(4): 1184-1189. DOI: https://doi.org/10.1016/j.foodhyd.2008.06.009

Botega, D., Marangoni, A., Smith, A., and Goff, H. (2013). Development of formulations and processes to incorporate waxoleogels in ice cream. Journal of Food Science. 78(12): 1845-1851. DOI: https://doi.org/10.1111/1750-3841.12248

Ceballos, M., Brailovsky, V., Bierbrauer, K., Cuffini, S., Beltramo, D., and Bianco, I. (2014). Effect of ethylcellulose on the structure and stability of non-aqueous oil based propylene glycol emulsions. Food Research International. 62: 416-423. DOI: https://doi.org/10.1016/j.foodres.2014.03.040

Chaves, K., Barrera-Arellano, D., and Ribeiro, A. (2018). Potential application of lipid organogels for food industry. Food Research International. 105: 863-872. DOI: https://doi.org/10.1016/j.foodres.2017.12.020

Co, E. and Marangoni, A. (2012). Organogels : an alternative edible oil-structuring method. Journal of American Oil Chemical Society. 89(5): 749-780. DOI: https://doi.org/10.1007/s11746-012-2049-3

COMECARNE, Consejo Mexicano de la Carne (2018). Consejo Mexicano de la Carne. [En línea]. Disponible en: https://comecarne.org/datos-de-la-industria/. Fecha de consulta: 3 de enero de 2019.

Davidovich-Pinhas, M., Barbut, S., and Marangoni, A. (2016). Development, characterization, and utilization of food-grade polymer oleogels. Annual Review of Food Science and Technology. 7(1): 65-91. DOI: https://doi.org/10.1146/annurev-food-041715-033225

Eerd, J. (1971). Meat emulsion stability. Influence of hydrophilic lipophilic balance, salt concentration and blending with surfactants. Journal of Food Science. 36(7): 1121-1124. DOI: https://doi.org/10.1111/j.1365-2621.1971.tb03361.x

Flores, M., Giner, E., Fiszman, S. M., Salvador, A., and Flores, J. (2007). Effect of a new emulsifier containing sodium stearoyl-2-lactylate and carrageenan on the functionality of meat emulsion systems. Meat Science. 76(1): 9-18. DOI: https://doi.org/10.1016/j.meatsci.2006.06.032

Gandolfo, F. G., Bot, A., and Flöter, E. (2004). Structuring of edible oils by long-chain FA, fatty alcohols, and their mixtures. Journal of the American Oil Chemists’ Society. 81(1): 1-6. DOI: https://doi.org/10.1007/s11746-004-0851-5

Garti, N. and Marangoni, A. (2011). Edible Oleogels: An overview of the past, present, and future of organogels. Urbana IL: AOCS Press. 1-17 Pp. DOI: https://doi.org/10.1016/B978-0-9830791-1-8.50004-8

Gordon, A. and Barbut, S. (1992). Mechanisms of meat batter stabilization : A review. Critical Reviews in Food Science and Nutrition. 32(4): 299-332. DOI: https://doi.org/10.1080/10408399209527602

Grasso, S., Brunton, N. P., Lyng, J. G., Lalor, F., and Monahan, F. J. (2014). Healthy processed meat products e regulatory, reformulation and consumer challenges. Trends in Food Science & Technology. 39(1): 4-17. DOI: https://doi.org/10.1016/j.tifs.2014.06.006

Gravelle, A., Barbut, S., Quinton, M., and Marangoni, A. (2014). Towards the development of a predictive model of the formulation-dependent mechanical behaviour of edible oil-based ethylcellulose oleogels. Journal of Food Engineering. 143: 114-122. DOI: https://doi.org/10.1016/j.jfoodeng.2014.06.036

Hughes, N., Marangoni, A., Wright, A., Rogers, M., and Rush, J. (2009). Potential food applications of edible oil organogels. Trends in Food Science & Technology. 20(10): 470-480. DOI: https://doi.org/10.1016/j.tifs.2009.06.002

Hwang, H., Singh, M., Bakota, E. L., Winkler-Moser, J., Kim, S., and Liu, S. (2013). Margarine from organogels of plant wax and soybean oil. Journal of the American Oil Chemists’ Society. 90(11): 1705-1712. DOI: https://doi.org/10.1007/s11746-013-2315-z

Jiménez-Colmenero, F. (2007). Healthier lipid formulation approaches in meat-based functional foods. Technological options for replacement of meat fats by non-meat fats. Trends in Food Science and Technology. 18(11): 567-578. DOI: https://doi.org/10.1016/j.tifs.2007.05.006

Kouzounis, D., Lazaridou, A., and Katsanidis, E. (2017). Partial replacement of animal fat by oleogels structured with monoglycerides and phytosterols in frankfurter sausages. Meat Science. 130: 38-46. DOI: https://doi.org/10.1016/j.meatsci.2017.04.004

Lupi, F., Gabriele, D., Facciolo, D., Baldino, N., Seta, L., and de-Cindio, B. (2012). Effect of organogelator and fat source on rheological properties of olive oil-based organogels. Food Research International. 46(1): 177-184. DOI: https://doi.org/10.1016/j.foodres.2011.11.029

Lupi, F., Gabriele, D., Seta, L., Baldino, N., and de-Cindio, B. (2014). Rheological design of stabilized meat sauces for industrial uses. European Journal of Lipid Science and Technology. 116(12): 1734-1744. DOI: https://doi.org/10.1002/ejlt.201400286

Moriano, M. and Alamprese, C. (2017). Organogels as novel ingredients for low saturated fat ice creams. LWT - Food Science and Technology. 86: 371-376. DOI: https://doi.org/10.1016/j.lwt.2017.07.034

Moschakis, T., Dergiade, I., Lazaridou, A., Biliaderis, C., and Katsanidis, E. (2017). Modulating the physical state and functionality of phytosterols by emulsification and organogel formation: Application in a model yogurt system. Journal of Functional Foods. 33: 386-395. DOI: https://doi.org/10.1016/j.jff.2017.04.007

Moschakis, T., Panagiotopoulou, E., and Katsanidis, E. (2016). Sunflower oil organogels and organogel-in-water emulsions (part I): Microstructure and mechanical properties. LWT - Food Science and Technology. 73: 153-161. DOI: https://doi.org/10.1016/j.lwt.2016.03.004

Muguerza, E. and Gimeno, O. (2004). New formulations for healthier dry fermented sausages : a review. Trends in Food Science & Technology. 15(9): 452-457. DOI: https://doi.org/10.1016/j.tifs.2003.12.010

Murdan, S., Gregoriadis, G., and Florence, A. (1999). Novel sorbitan monostearate organogels. Journal of Pharmaceutical Sciences. 88(6): 608-614. DOI: https://doi.org/10.1021/js980342r

Nettleton, J., Brouwer, I., Geleijnse, J., and Hornstra, G. (2017). Saturated fat consumption and risk of coronary heart disease and ischemic stroke: A Science Update. Annals of Nutrition and Metabolism. 70(1): 26-33. DOI: https://doi.org/10.1159/000455681

NHDSC, National Hot Dog and Sausage Council (2016). National Hot Dog and Sausage Council. Estadísticas de consumo. [En línea]. Disponible en: http://www.hot-dog.org/media/consumption-stats. Fecha de consulta: 30 de enero de 2018.

Okesola, B., Vieira, V., Cornwell, D., Whitelaw, N., and Smith, D. (2015). 1,3:2,4-Dibenzylidene- D-sorbitol (DBS) and its derivatives – efficient, versatile and industrially-relevant low-molecular-weight gelators with over 100 years of history and a bright future. Soft Matter. 11(24): 4768-4787. DOI: https://doi.org/10.1039/C5SM00845J

Öğütcü, M. and Yilmaz, E. (2015). Comparison of the pomegranate seed oil organogels of carnauba wax and monoglyceride. Journal of Applied Polymer Science. 132(4): 10-13. DOI: https://doi.org/10.1002/app.41343

Panagiotopoulou, E., Moschakis, T., and Katsanidis, E. (2016). Sunflower oil organogels and organogel-in-water emulsions (part II): Implementation in frankfurter sausages. LWT - Food Science and Technology. 73(part II): 351-356. DOI: https://doi.org/10.1016/j.lwt.2016.06.006

Park, J., Rhee, K., Keeton, J., and Rhee, K. (1989). Properties of low-fat Frankfurters containing monounsaturated and omega-3 polyunsaturated oils. Journal of Food Science. 54(3): 500-504. DOI: https://doi.org/10.1111/j.1365-2621.1989.tb04637.x

Patel, A. and Dewettinck, K. (2015). Comparative evaluation of structured oil systems: Shellac oleogel, HPMC oleogel, and HIPE gel. European Journal of Lipid Science and Technology. 117(11): 1772-1781. DOI: https://doi.org/10.1002/ejlt.201400553

Patel, A. and Dewettinck, K. (2016). Edible oil structuring: an overview and recent updates. RSC Food Function. 7(1): 20-29. DOI: https://doi.org/10.1039/C5FO01006C

Patel, A., Schatteman, D., Lesaffer, A., and Dewettinck, K. (2013). A foam-templated approach for fabricating organogels using a water-soluble polymer. RSC Advances. 3(45): 22900-22903. DOI: https://doi.org/10.1039/C3RA44763D

Pehlivanoglu, H., Demirci, M., and Toker, O. (2018). Rheological properties of wax oleogels rich in high oleic acid. International Journal of Food Properties. 20(3): 2856-2867. DOI: https://doi.org/10.1080/10942912.2017.1381704

Pernetti, M., van Malssen, K., Flöter, E., and Bot, A. (2007a). Structuring of edible oils by alternatives to crystalline fat. Current Opinion in Colloid and Interface Science. 12(4-5): 221-231. DOI: https://doi.org/10.1016/j.cocis.2007.07.002

Pernetti, M., van-Malssen, K., Kalnin, D., and Flöter, E. (2007b). Structuring edible oil with lecithin and sorbitan tri-stearate. Food Hydrocolloids. 21(5-6): 855-861. DOI: https://doi.org/10.1016/j.foodhyd.2006.10.023

Ramos, G., Farias, E., Almada, C., and Crivaro, N. (2004). Estabilidad de salchichas con hidrocoloides y emulsificantes. Información Tecnológica. 15(4): 91-94. DOI: https://doi.org/10.4067/S0718-07642004000400013

Rogers, M. A. (2009). Novel structuring strategies for unsaturated fats – Meeting the zero-trans, zero-saturated fat challenge : A review. Food Research International. 42(7): 747-753. DOI: https://doi.org/10.1016/j.foodres.2009.02.024

Rogers, M., Strober, T., Bot, A., Toro-vazquez, J., Stortz, T. and Marangoni, A. (2014). Edible oleogels in molecular gastronomy. International Journal of Gastronomy and Food Science. 20(1): 22-31. DOI: https://doi.org/10.1016/j.ijgfs.2014.05.001

Sánchez, R., Franco, J., Delgado, M., Valencia, C., and Gallegos, C. (2011). Rheology of oleogels based on sorbitan and glyceryl monostearates and vegetable oils for lubricating applications. Grasas y Aceites. 62(3): 328-336. DOI: https://doi.org/10.3989/gya.113410

Sawalha, H., Venema, P., Bot, A., Flöter, E., and van der Linden, E. (2011). The influence of concentration and temperature on the formation of γ-oryzanol + β-sitosterol tubules in edible oil organogels. Food Biophysics. 6(1): 20-25. DOI: https://doi.org/10.1007/s11483-010-9169-9

Schaink, H. and Van-Malssen, K. (2007). Shear modulus of sintered ‘house of cards’-like assemblies of crystals. Langmuir. 23(25): 12682-12686. DOI: https://doi.org/10.1021/la701914m

Si, H., Cheong, L., Huang, J., Wang, X., and Zhang, H. (2016). Physical properties of soybean oleogels and oil migrationevaluation in model praline system. Journal of the American Oil Chemists’ Society. 93(8): 1075-1084. DOI: https://doi.org/10.1007/s11746-016-2846-1

Siraj, N., Shabbir, M., Ahmad, T., Sajjad, A., Khan, M., Khan, M., and Butt, M. (2015). Organogelators as a saturated fat replacer for structuring edible oils. International Journal of Food Properties. 18(9): 1973-1989. DOI: https://doi.org/10.1080/10942912.2014.951891

Stortz, T., Zetzl, A., Barbut, S., Cattaruzza, A., and Marangoni, A. (2012). Edible oleogels in food products to help maximize health benefits and improve nutritional profiles. Lipid Technology. 24(7): 151-154. DOI: https://doi.org/10.1002/lite.201200205

Terech, P. and Weiss, R. (1997). Low molecular mass gelators of organic liquids and the properties of their gels. Chemical Reviews. 97(8): 3133-3160. DOI: https://doi.org/10.1021/cr9700282

Triki, M., Herrero, A., Jiménez-Colmenero, F., and Ruiz-Capillas, C. (2013). Effect of preformed konjac gels, with and without olive oil, on the technological attributes and storage stability of merguez sausage. Meat Science. 93(3): 351-360. DOI: https://doi.org/10.1016/j.meatsci.2012.10.004

Utrilla, M., García-Ruiz, A., and Soriano, A. (2014). Effect of partial replacement of pork meat with an olive oil or-

ganogel on the physicochemical and sensory quality of dryripened venison sausages. Meat Science. 97(4): 575-582. DOI: https://doi.org/10.1016/j.meatsci.2014.03.001

Vintiloiu, A. and Leroux, J. (2008). Organogels and their use in drug delivery — A review. Journal of Controlled Release. 125(3): 179-192. DOI: https://doi.org/10.1016/j.jconrel.2007.09.014

Wang, F., Gravelle, A., Blake, A., and Marangoni, A. (2016). Novel trans fat replacement strategies. Current Opinion in Food Science. 7: 27-34. DOI: https://doi.org/10.1016/j.cofs.2015.08.006

Wright, A. and Marangoni, A. (2007). Time, temperature, and concentration dependence of ricin elaidic acid canola oil organogelation. Journal of the American Oil Chemists’ Society. 84(1): 3-9. DOI: https://doi.org/10.1007/s11746-006-1012-6

Yılmaz, E. and Öğütcü, M. (2014). Properties and stability of hazelnut oil organogels with beeswax and monoglyceride. Journal of the American Oil Chemists Society. 21(6): 1007-1017. DOI: https://doi.org/10.1007/s11746-014-2434-1

Youssef, M. and Barbut, S. (2009). Effects of protein level and fat/oil on emulsion stability, texture, microstructure and color of meat batters. Meat Science. 82(2): 228-233. DOI: https://doi.org/10.1016/j.meatsci.2009.01.015

Youssef, M. and Barbut, S. (2011). Fat reduction in comminuted meat products-effects of beef fat, regular and preemulsified canola oil. Meat Science. 87(4): 356-360. DOI: https://doi.org/10.1016/j.meatsci.2010.11.011

Yu, G., Yan, X., Han, C., and Huang, F. (2013).

Characterization of supramolecular gels. Chemical Society Reviews. 42(16): 6697-6722. DOI: https://doi.org/10.1039/c3cs60080g

Zetzl, A., Marangoni, A., and Barbut, S. (2012). Mechanical properties of ethylcellulose oleogels and their potential for saturated fat reduction in frankfurters †. Food & Function. 3(3): 327-337. DOI: https://doi.org/10.1039/c2fo10202a

Published

2019-07-29

How to Cite

García-Andrade, M., Gallegos-Infante, J. A., & González-Laredo, R. F. (2019). Organogels as lipid profile improvers in meat and dairy matrices. CienciaUAT, 14(1), 121–132. https://doi.org/10.29059/cienciauat.v14i1.1129

Similar Articles

1 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.