Películas comestibles a base de almidón nanoestructurado como material de barrera a la humedad
DOI:
https://doi.org/10.29059/cienciauat.v13i2.1105Palabras clave:
propiedades de películas comestibles, nanoestructruación, almidón de maízResumen
Los materiales de empaque proporcionan protección física y crean las condiciones fisicoquímicas apropiadas para proporcionar una vida útil adecuada. Recientemente, la industria alimentaria ha propuesto incorporar nanocompuestos a películas comestibles que se degraden en un periodo corto, sin causar problemas medioambientales. El objetivo de esta investigación fue desarrollar una película comestible resistente a la humedad, utilizando almidón nanoestructurado, que pueda servir de empaque para aumentar la vida útil de los alimentos, sin afectar el medioambiente. Los efectos del almidón nanoestructurado sobre las propiedades físicas y estructurales de una película comestible fueron estudiados en términos de espesor, solubilidad en agua, difusión, permeabilidad al vapor de agua (PVA), velocidad de transmisión de vapor de agua (VTVA) y comparados a las películas de almidón nativo. Los resultados mostraron que las películas comestibles formuladas con almidón nanoestructurado presentaron menor espesor, comparadas a las elaboradas con almidón nativo, además, los valores de la solubilidad en agua, el coeficiente de difusión, PVA y VTVA fueron menores para las películas nanoestructuradas, con respecto a las de almidón nativo. La nanoestructuración del almidón de maíz permitió obtener películas comestibles con excelentes propiedades de barrera a la humedad, sin modificar las propiedades estructuralesde la matriz del polímero, lo que podría constituir una alternativa para el empaque de alimentos.
Citas
Acosta, D. L., Hernández, S. H., Gutiérrez, L. G. F., Alamilla, B. L., and Azuara, E. (2016). Modification of the soy protein isolates surface at nanometric scale and its effect on physicochemical properties. Journal of Food Engineering. 168: 105-112. DOI: https://doi.org/10.1016/j.jfoodeng.2015.07.031
ASTM, E96, American Society for Testing and Materials (2000). Standard test methods for water vapour transmission of materials. Philadelphia: Standards American Society for Testing and Materials. 739 Pp.
Avella, M., De-Vlieger, J. J., Errico, M. E., Fischer, S., Vacca, P., and Grazia, V. M. (2005). Biodegradable starch/clay nanocomposite films for food packaging applications. Food Chemistry. 93: 467-474. DOI: https://doi.org/10.1016/j.foodchem.2004.10.024
Bertuzzi, M. A., Armada, M., and Gottifredi, J. C. (2007). Physicochemical characterization of starch based films. Journal of Food Engineering. 82(1): 17-25. DOI: https://doi.org/10.1016/j.jfoodeng.2006.12.016
Bradley, L. E., Castle, L., and Chaudhry, Q. (2011). Application of nanomaterials in food packaging with a consideration of opportunities for developing countries. Trends in Food Science and Technology. 22(11): 604-610. DOI: https://doi.org/10.1016/j.tifs.2011.01.002
Brannon-Peppas, L. and Peppas, N. A. (1989). Solute and penetrant diffusion in swell able polymers. IX. The mechanisms of drug release from pH-sensitive swelling-controlled systems. Journal of Control Release. 8(3): 267-274. DOI: https://doi.org/10.1016/0168-3659(89)90048-5
Bravin, B., Peressini, D., and Sensidoni, A. (2004). Influence of emulsifier type and content on functional properties of polysaccharide lipid-based edible films. Journal of Agricultural and Food Chemistry. 52(21): 6448-6455. DOI: https://doi.org/10.1021/jf040065b
Cao, G. (2004). Nanostructures and nanomaterials: synthesis, properties and applications. Ed. Imperial College Press, UK. 433 Pp. DOI: https://doi.org/10.1142/9781860945960
Cheviron, P., Gouanvé, F., and Espuche, E. (2015). Effect of silver nanoparticles generation routes on the morphology, oxygen, and water transport properties of starch nanocomposite films. Journal of Nanoparticules Research. 17(9): 1-16. DOI: https://doi.org/10.1007/s11051-015-3173-4
Chinma, C. E., Ariahu, C. C., and Alakali, J. S. (2015). Effect of temperature and relative humidity on the water vapour permeability and mechanical properties of cassava starch and soy protein concentrate based edible films. Journal of Food Science and Technology. 52(4): 2380-2386. DOI: https://doi.org/10.1007/s13197-013-1227-0
Chiralt, A., Talens, P., Monedero, F. M., and Fabra, M. J.(2016). Effect of different components of edible/biodegradable composite films on water relationships in the polymer matrix. In water, stress in biological, chemical, pharmaceutical and food systems. In G. F. Gutiérrez-Lópéz, B. L. Alamilla, M. P. Buera, C. J. Welti, A. E. Parada, and G. V. Barbosa-Cánovas (Ed.), Food Engineering Series (pp. 101-113). New York, NY: Springer Science. DOI: https://doi.org/10.1007/978-1-4939-2578-0_8
Chiumarelli, M. and Hubinger M. D. (2012). Stability, solubility, mechanical and barrier properties of cassava starch–Carnauba wax edible coatings to preserve fresh-cut apples. Food Hydrocolloids. 28(1): 59-67. DOI: https://doi.org/10.1016/j.foodhyd.2011.12.006
Chiumarelli, M. and Hubinger, M. D. (2014). Evaluation of edible films and coating formulated with cassava starch, glycerol, carnauba wax and stearic acid. Food Hydrocolloids. 28: 20-27. DOI: https://doi.org/10.1016/j.foodhyd.2013.11.013
Chiumarelli, M., Pereira, L. M. R., Ferrari, C. C., Sarantópoulos, C. I. G. L., and Hubinger. M. D. (2010). Cassava starch coating and citric acid to preserve quality parameters of fresh-cut “Tommy Atkins” mango. Journal of Food Science. 75: 297-304. DOI: https://doi.org/10.1111/j.1750-3841.2010.01636.x
Condés, M. C., Añón, M. C., Mauri, A. N., and Dufresne, A. (2015). Amaranth protein films reinforced with maize starch nanocrystals. Food Hydrocolloids. 47: 146-157. DOI: https://doi.org/10.1016/j.foodhyd.2015.01.026
Crank, J. (1975). The mathematics of diffusion. (Second edition). England, Oxford: University Press. 414 Pp.
Gennadios, A., Weller, C. L., and Gooding, C. H. (1994). Measurement errors in water vapor permeability of highly permeable, hydrophilic edible films. Journal of Food Engineering. 21(4): 395-409. DOI: https://doi.org/10.1016/0260-8774(94)90062-0
Gutiérrez, J. T., Tapia, M. S., Pérez, E., and Famá, L. (2015). Structural and mechanical properties of edible films made from native and modified cush-cush yam and cassava starch. Food Hydrocolloids. 45: 211-217. DOI: https://doi.org/10.1016/j.foodhyd.2014.11.017
Ji, Y., Seetharaman, K., and White, P. J. (2004). Optimizing a small-scale cornstarch extraction method for use in the laboratory. Cereal Chemistry. 81(1): 55-58. DOI: https://doi.org/10.1094/CCHEM.2004.81.1.55
Oleyaei, S. A., Zahedi, Y., Ghanbarzadeh, B., and Moayedi, A. A. (2016). Modification of physicochemical and thermal properties of starch films by incorporation of TiO2 nanoparticles. International Journal of Biological Macromolecules. 89: 256-264. DOI: https://doi.org/10.1016/j.ijbiomac.2016.04.078
Pascual, P. L. A., Flores, A. E., Alamilla, B. L., Chanona, P. J. J., Beristain, C. I., Gutiérrez, L. G. F., and Azuara, E. (2014). Micropores and their relationship with carotenoids stability: A new tool to study preservation of solid foods. Food and Bioprocess Technology. 7(4): 1160-1170. DOI: https://doi.org/10.1007/s11947-013-1162-0
Peppas, N. A. and Sinclair, J. L. (1983). Anomalous transport of penetrants in glassy polymers. Colloidal Polymer Sciences. 261(5): 404-408. DOI: https://doi.org/10.1007/BF01418213
Piringer, O. G. and Baner, A. L. (2008). Plastic packaging materials for food: barrier function, mass transport, quality assurance, and legislation. Nueva York: Wiley-VCH Germany. 576 Pp. DOI: https://doi.org/10.1002/9783527621422
Rafieian, F., Shahedi, M., Keramat, J., and J. Simonsen, J. (2014). Thermomechanical and morphological properties of nanocomposite films from wheat gluten matrix and cellulose nanofibrils. Journal of Food Science 79(1): N100-N107. DOI: https://doi.org/10.1111/1750-3841.12231
Romero, C. A., Zamudio, P. B., and Bello, L. A. (2011). Antimicrobials in oxidized banana starch films: effect on antibacterial activity, microstructure, mechanicals and barrier properties. Revista Mexicana de Ingeniería Química. 10(3): 445-453.
Silvestre, C., Duraccio, D., and Cimmino, S. (2011). Food packaging based on polymer nanomaterials. Progress in Polymer Science. 36(12): 1766-1782. DOI: https://doi.org/10.1016/j.progpolymsci.2011.02.003
Slavutsky, M. A. and Bertuzzi A. M. (2012). A phenomenological and thermodynamic study of the water permeation process in corn starch/MMT films. Carbohydrates Polymers. 90(1): 551-557. DOI: https://doi.org/10.1016/j.carbpol.2012.05.077
Slavutsky, M. A. and Bertuzzi, A. M. (2014). Water barrier properties of starch films reinforced with cellulose nanocrystals obtained from sugarcane bagasse. Carbohydrates Polymers. 110: 53-61. DOI: https://doi.org/10.1016/j.carbpol.2014.03.049
Slavutsky, M. A. and Bertuzzi A. M. (2015). Formulation and characterization of nanolaminated starch-based film. LWT-Food Science and Technology. 61(2): 407-413. DOI: https://doi.org/10.1016/j.lwt.2014.12.034
Sorrentino, A., Gorrasi, G., and Vittoria, V. (2007). Potential perspectives of bio-nanocomposites for food packaging applications. Trends in Food Science & Technology. 18(2): 84-95. DOI: https://doi.org/10.1016/j.tifs.2006.09.004
Youssef, A. M. (2016). Polymer Nanocomposites as a New Trend for Packaging Applications. Polymer Plastics Technology Engineering. 52(7): 635-660. DOI: https://doi.org/10.1080/03602559.2012.762673