Péptidos bioactivos derivados de las semillas de frijol (Phaseolus vulgaris L.)

Autores/as

  • Raúl Reyes-Bautista Tecnológico Nacional de México/ITS de Purísima del Rincón, Laboratorio de Bioprocesos, División de Ingeniería Bioquímica, boulevard del Valle núm. 2301, Guardarrayas, Purísima del Rincón, Guanajuato, México, C. P. 36425. https://orcid.org/0000-0003-4196-3877
  • José de Jesús Flores-Sierra Tecnológico Nacional de México/ITS de Purísima del Rincón, Laboratorio de Bioprocesos, División de Ingeniería Bioquímica, boulevard del Valle núm. 2301, Guardarrayas, Purísima del Rincón, Guanajuato, México, C. P. 36425. https://orcid.org/0000-0002-9484-8373
  • Luis Ángel Xoca-Oroxco Tecnológico Nacional de México/ITS de Purísima del Rincón, Laboratorio de Bioprocesos, División de Ingeniería Bioquímica, boulevard del Valle núm. 2301, Guardarrayas, Purísima del Rincón, Guanajuato, México, C. P. 36425. https://orcid.org/0000-0002-8977-7961

DOI:

https://doi.org/10.29059/cienciauat.v19i1.1872

Palabras clave:

frijol, biopéptidos, actividad biológica, hidrolizados proteínicos

Resumen

Diversos compuestos de origen vegetal pueden coadyuvar en el control y prevención de las enfermedades consideradas como un problema de salud pública, entre ellas las crónico-degenerativas. Las proteínas de origen vegetal representan una excelente alternativa frente a las de origen animal debido a la menor huella de carbono. Se les considera una excelente fuente de péptidos funcionales, que presentan diferentes actividades biológicas. El objetivo de este trabajo fue analizar los avances en el estudio de los hidrolizados proteínicos, para la obtención de péptidos bioactivos, que se encuentran encriptados en las proteínas de almacenamiento de las semillas del frijol común (Phaseolus vulgaris L.). Los estudios se han enfocado a mejorar el proceso de obtención a través de hidrólisis enzimática, fermentación microbiana e incluso métodos sintéticos. También se tienen adelantos en su purificación, identificación y en la evidencia de su actividad funcional, tales como: propiedades anti-oxidantes, antihipertensivas y antidiabéticas. Las investigaciones localizadas están dirigidas a lograr que los hidrolizados proteínicos, derivados del frijol, con potencial nutracéutico o terapéutico, por haberse demostrado su actividad biológica in vitro e in vivo, puedan incorporarse en el desarrollo de alimentos funcionales.

Citas

Acquah, C., Dzuvor, C. K. O., Tosh, S., & Agyei, D. (2022). Anti-diabetic effects of bioactive peptides: recent advances and clinical implications. Critical reviews in food science and nutrition, 62(8), 2158-2171. https://doi.org/10.1080/10408398.2020.1851168 DOI: https://doi.org/10.1080/10408398.2020.1851168

ADA, American Diabetes Association (2020). 9. Pharmacologic Approaches to Glycemic Treatment: Standards of Medical Care in Diabetes—2020. Diabetes Care, 43(Supplement_1), S98-S110. https://doi.org/10.2337/dc20-S009 DOI: https://doi.org/10.2337/dc20-S009

ADA, American Diabetes Association (2021). 2. Classification and Diagnosis of Diabetes: Standards of Medical Care in Diabetes—2021. Diabetes Care, 44(Supplement_1), S15-S33. https://doi.org/10.2337/dc21-S002 DOI: https://doi.org/10.2337/dc21-S002

Adamson, N. J. & Reynolds, E. C. (1996). Characterization of casein phosphopeptides prepared using alcalase: Determination of enzyme specificity. Enzyme and microbial technology, 19(3), 202–207. https://doi.org/10.1016/0141-0229(95)00232-4 DOI: https://doi.org/10.1016/0141-0229(95)00232-4

Aguilar, J. G., dos, S., Granato-Cason, V., & de-Castro, R. J. S. (2019). Improving antioxidant activity of black bean protein by hydrolysis with protease combinations. International Journal of food science & technology, 54(1), 34-41. https://doi.org/10.1111/ijfs.13898 DOI: https://doi.org/10.1111/ijfs.13898

Ahamad, J., Ali, F., Sayed, M. A., Ahmad, J., & Nollet, L. M. L. (2022). Basic Principles and Fundamental Aspects of Mass Spectrometry. In L. Nollet & R. Winkler (Eds.), Mass spectrometry in food analysis (pp. 3-17). CRC Press. https://doi.org/10.1201/9781003091226-2 DOI: https://doi.org/10.1201/9781003091226-2

Akbarian, M., Khani, A., Eghbalpour, S., & Uversky, V. N. (2022). Bioactive Peptides: Synthesis, Sources, Applications, and Proposed Mechanisms of Action. International Journal of molecular sciences, 23(3), 1445–1474. https://doi.org/10.3390/ijms23031445 DOI: https://doi.org/10.3390/ijms23031445

Akıllıoğlu, H. G. & Karakaya, S. (2009). Effects of heat treatment and in vitro digestion on the Angiotensin converting enzyme inhibitory activity of some legume species. European food research and technology, 229(6), 915-921. https://doi.org/10.1007/s00217-009-1133-x DOI: https://doi.org/10.1007/s00217-009-1133-x

Alidoost, S., Maleki, M., & Pourasghari, H. (2021). Identifying drivers and factors affecting behavioral risk factors of noncommunicable diseases: A scoping review. Journal of education and health promotion, 10, 398-406. https://doi.org/10.4103/jehp.jehp_1379_20 DOI: https://doi.org/10.4103/jehp.jehp_1379_20

Al-Ruwaih, N., Ahmed, J., Mulla, M. F., & Arfat, Y. A. (2019). High-pressure assisted enzymatic proteolysis of kidney beans protein isolates and characterization of hydrolysates by functional, structural, rheological and antioxidant properties. LWT, 100, 231-236. https://doi.org/10.1016/j.lwt.2018.10.074 DOI: https://doi.org/10.1016/j.lwt.2018.10.074

Antony, P. & Vijayan, R. (2021). Bioactive Peptides as Potential Nutraceuticals for Diabetes Therapy: A Comprehensive Review. International journal of molecular sciences, 22(16), 9059. https://doi.org/10.3390/ijms22169059 DOI: https://doi.org/10.3390/ijms22169059

Aondona, M. M., Ikya, J. K., Ukeyima, M. T., Gborigo, T. J. A., Aluko, R. E., & Girgih, A. T. (2021). In vitro antioxidant and antihypertensive properties of sesame seed enzymatic protein hydrolysate and ultrafiltration peptide fractions. Journal of food biochemistry, 45(1), e13587–e13599. https://doi.org/10.1111/jfbc.13587 DOI: https://doi.org/10.1111/jfbc.13587

Ariza-Ortega, T. D. J., Zenón-Briones, E. Y., Castrejón-Flores, J. L., Yáñez-Fernández, J., Gómez-Gómez, Y. D. L. M., & Oliver-Salvador, M. D. C. (2014). Angiotensin-I-converting enzyme inhibitory, antimicrobial, and antioxidant effect of bioactive peptides obtained from different varieties of common beans (Phaseolus vulgaris L.) with in vivo antihypertensive activity in spontaneously hypertensive rats. European food research and technology, 239(5). https://doi.org/10.1007/s00217-014-2271-3 DOI: https://doi.org/10.1007/s00217-014-2271-3

Babini, E., Tagliazucchi, D., Martini, S., Dei-Più, L., & Gianotti, A. (2017). LC-ESI-QTOF-MS identification of novel antioxidant peptides obtained by enzymatic and microbial hydrolysis of vegetable proteins. Food chemistry, 228, 186–196. https://doi.org/10.1016/j.foodchem.2017.01.143 DOI: https://doi.org/10.1016/j.foodchem.2017.01.143

Baker, M. T., Lu, P., Parrella, J. A., & Leggette, H. R. (2022). Consumer Acceptance toward Functional Foods: A Scoping Review. International Journal of environmental research and public health, 19(3), 1217. https://doi.org/10.3390/ijerph19031217 DOI: https://doi.org/10.3390/ijerph19031217

Balasubramaniam, V. M., Martínez-Monteagudo, S. I., & Gupta, R. (2015). Principles and Application of High Pressure–Based Technologies in the Food Industry. Annual review of food science and technology, 6(1), 435-462. https://doi.org/10.1146/annurev-food-022814-015539 DOI: https://doi.org/10.1146/annurev-food-022814-015539

Barati, M., Javanmardi, F., Mousavi-Jazayeri, S. M. H., Jabbari, M., Rahmani, J., Barati, F., Nickho, H., Davoodi, S. H., Roshanravan, N., & Mousavi-Khaneghah, A. (2020). Techniques, perspectives, and challenges of bioactive peptide generation: A comprehensive systematic review. Comprehensive Reviews in Food Science and Food Safety, 19(4), 1488-1520. https://doi.org/10.1111/1541-4337.12578 DOI: https://doi.org/10.1111/1541-4337.12578

Barredo-Vacchelli, G. R., Giudicessi, S. L., Martínez-Ceron, M. C., Cascone, O., & Camperi, S. A. (2021). Peptide Affinity Chromatography Applied to Therapeutic Antibodies Purification. International journal of peptide research and therapeutics, 27(4), 2905–2921. https://doi.org/10.1007/s10989-021-10299-5 DOI: https://doi.org/10.1007/s10989-021-10299-5

Bessada, S. M. F., Barreira, J. C. M., & Oliveira, M. B. P. P. (2019). Pulses and food security: Dietary protein, digestibility, bioactive and functional properties. Trends in food science & technology, 93, 53-68. https://doi.org/10.1016/j.tifs.2019.08.022 DOI: https://doi.org/10.1016/j.tifs.2019.08.022

Betancur-Ancona, D., Sosa-Espinoza, T., Ruiz-Ruiz, J., Segura-Campos, M., & Chel-Guerrero, L. (2014). Enzymatic hydrolysis of hard-to-cook bean (Phaseolus vulgaris L.) protein concentrates and its effects on biological and functional properties. International journal of food science and technology, 49(1), 2-8. https://doi.org/10.1111/ijfs.12267 DOI: https://doi.org/10.1111/ijfs.12267

Bhandari, D., Rafiq, S., Gat, Y., Gat, P., Waghmare, R., & Kumar, V. (2020). A Review on Bioactive Peptides: Physiological Functions, Bioavailability and Safety. International journal of peptide research and therapeutics, 26(1), 139-150. https://doi.org/10.1007/s10989-019-09823-5 DOI: https://doi.org/10.1007/s10989-019-09823-5

Bitocchi, E., Nanni, L., Bellucci, E., Rossi, M., Giardini, A., Zeuli, P. S., Logozzo, G., Stougaard, J., McClean, P., Attene, G., & Papa, R. (2012). Mesoamerican origin of the common bean (Phaseolus vulgaris L.) is revealed by sequence data. Proceedings of the national academy of sciences, 109(14), E788-E796. https://doi.org/10.1073/pnas.1108973109 DOI: https://doi.org/10.1073/pnas.1108973109

Carrasco-Castilla, J., Hernández-Álvarez, A. J., Jiménez-Martínez, C., Jacinto-Hernández, C., Alaiz, M., Girón-Calle, J., Vioque, J., & Dávila-Ortiz, G. (2012). Antioxidant and metal chelating activities of peptide fractions from phaseolin and bean protein hydrolysates. Food chemistry, 135(3), 1789-1795. https://doi.org/10.1016/j.foodchem.2012.06.016 DOI: https://doi.org/10.1016/j.foodchem.2012.06.016

Castañeda-Pérez, E., Jiménez-Morales, K., Quintal-Novelo, C., Moo-Puc, R., Chel-Guerrero, L., & Betancur-Ancona, D. (2019). Enzymatic protein hydrolysates and ultrafiltered peptide fractions from Cowpea Vigna unguiculata L bean with in vitro antidiabetic potential. Journal of the iranian chemical society, 16(8), 1773-1781. https://doi.org/10.1007/s13738-019-01651-0 DOI: https://doi.org/10.1007/s13738-019-01651-0

Chel-Guerrero, L., Domínguez-Magaña, M., Martínez-Ayala, A., Dávila-Ortiz, G., & Betancur-Ancona, D. (2012). Lima Bean (<i>Phaseolus lunatus</i>) Protein Hydrolysates with ACE-I Inhibitory Activity. Food and nutrition sciences, 03(04), 511-521. https://doi.org/10.4236/fns.2012.34072 DOI: https://doi.org/10.4236/fns.2012.34072

Choudhary, N., Anjali, Gupta, M., Shafi, S., Jan, S., Hamid-Mir, A., Singh, B., & Rouf-Mir, R. (2022). Molecular diversity and nutriment studies of common bean (Phaseolus vulgaris L.) from the two hot-spots of Western Himalayas of Jammu and Kashmir. Crop & pasture science, 73(3), 249-262. https://doi.org/10.1071/CP21347 DOI: https://doi.org/10.1071/CP21347

Cruz-Casas, D. E., Aguilar, C. N., Ascacio-Valdés, J. A., Rodríguez-Herrera, R., Chávez-González, M. L., & Flores-Gallegos, A. C. (2021). Enzymatic hydrolysis and microbial fermentation: The most favorable biotechnological methods for the release of bioactive peptides. Food chemistry: molecular sciences, 3, 100047-100058. https://doi.org/10.1016/j.fochms.2021.100047 DOI: https://doi.org/10.1016/j.fochms.2021.100047

Das, S. & Hati, S. (2022). Food derived ACE inhibitory peptides: science to application. In D. Bagchi & S. E. Ohia (Eds.), Nutrition and Functional Foods in Boosting Digestion, Metabolism and Immune Health (pp. 39-54). Elsevier. https://doi.org/10.1016/B978-0-12-821232-5.00006-9 DOI: https://doi.org/10.1016/B978-0-12-821232-5.00006-9

De-Souza-Rocha, T., Hernandez, L. M. R., Mojica, L., Johnson, M. H., Chang, Y. K., & González-de-Mejía, E. (2015). Germination of Phaseolus vulgaris and alcalase hydrolysis of its proteins produced bioactive peptides capable of improving markers related to type-2 diabetes in vitro. Food research international, 76(P1), 150-159. https://doi.org/10.1016/j.foodres.2015.04.041 DOI: https://doi.org/10.1016/j.foodres.2015.04.041

De-Vuyst, L. & Leroy, F. (2007). Bacteriocins from Lactic Acid Bacteria: Production, Purification, and Food Applications. Microbial physiology, 13(4), 194-199. https://doi.org/10.1159/000104752 DOI: https://doi.org/10.1159/000104752

De-Fátima-Garcia, B., de-Barros, M., & de-Souza-Rocha, T. (2021). Bioactive peptides from beans with the potential to decrease the risk of developing noncommunicable chronic diseases. Critical reviews in food science and nutrition, 61(12), 2003-2021. https://doi.org/10.1080/10408398.2020.1768047 DOI: https://doi.org/10.1080/10408398.2020.1768047

Evangelho, J. A., Vanier, N. L., Pinto, V. Z., Berrios, J. J. D., Dias, A. R. G., & Zavareze, E. R. (2017). Black bean (Phaseolus vulgaris. L.) protein hydrolysates: Physicochemical and functional properties. Food chemistry, 214, 460-467. https://doi.org/10.1016/j.foodchem.2016.07.046 DOI: https://doi.org/10.1016/j.foodchem.2016.07.046

FAO, Food and Agriculture Organization of the United Nations (2022). FAOSTAT. CROPS. [En línea]. Disponible en: http://www.fao.org/faostat/en/#data/QC/visualize. Fecha de consulta: 22 de enero de 2024.

Freytag, G. F. & Debouck, D. G. (2002). Taxonomy, distribution, and ecology of the genus Phaseolus (Leguminosae-Papilionoideae) in North America, Mexico and Central America. [En línea]. Disponible en: https://api.semanticscholar.org/CorpusID:130456466. Fecha de consulta: 22 de enero de 2024.

Garcia-Mora, P., Frias, J., Peñas, E., Zieliński, H., Giménez-Bastida, J. A., Wiczkowski, W., Zielińska, D., & Martínez-Villaluenga, C. (2015). Simultaneous release of peptides and phenolics with antioxidant, ACE-inhibitory and anti-inflammatory activities from pinto bean (Phaseolus vulgaris L. var. pinto) proteins by subtilisins. Journal of functional foods, 18, 319-332. https://doi.org/10.1016/j.jff.2015.07.010 DOI: https://doi.org/10.1016/j.jff.2015.07.010

Gharibzahedi, S. M. T., Smith, B., & Altintas, Z. (2024). Bioactive and health-promoting properties of enzymatic hydrolysates of legume proteins: a review. Critical reviews in food science and nutrition, 64(9), 2548-2578 DOI: https://doi.org/10.1080/10408398.2022.2124399

Goldstein, N. & Reifen, R. (2022). The potential of legume-derived proteins in the food industry. Grain & oil science and technology, 5(4), 167-178. https://doi.org/10.1016/j.gaost.2022.06.002 DOI: https://doi.org/10.1016/j.gaost.2022.06.002

Gomes, M. J. C., Lima, S. L. S., Alves, N. E. G., Assis, A., Moreira, M. E. C., Toledo, R. C. L., Rosa, C. O. B., Teixeira, O. R., Bassinello, P. Z., de-Mejía, E. G., & Martino, H. S. D. (2020). Common bean protein hydrolysate modulates lipid metabolism and prevents endothelial dysfunction in BALB/c mice fed an atherogenic diet. Nutrition, metabolism and cardiovascular diseases, 30(1), 141-150. https://doi.org/10.1016/j.numecd.2019.07.020 DOI: https://doi.org/10.1016/j.numecd.2019.07.020

Granato, D., Barba, F. J., Bursać-Kovačević, D., Lorenzo, J. M., Cruz, A. G., & Putnik, P. (2020). Functional Foods: Product Development, Technological Trends, Efficacy Testing, and Safety. Annual review of food science and technology, 11(1), 93-118. https://doi.org/10.1146/annurev-food-032519-051708 DOI: https://doi.org/10.1146/annurev-food-032519-051708

Grdeń, P. & Jakubczyk, A. (2023). Health benefits of legume seeds. Journal of the science of food and agriculture, 103(11), 5213-5220. https://doi.org/10.1002/jsfa.12585 DOI: https://doi.org/10.1002/jsfa.12585

Gulcin, İ. (2020). Antioxidants and antioxidant methods: an updated overview. Archives of toxicology, 94(3), 651-715. https://doi.org/10.1007/s00204-020-02689-3 DOI: https://doi.org/10.1007/s00204-020-02689-3

Hernández-Corroto, E., Plaza, M., Marina, M. L., & García, M. C. (2020). Sustainable extraction of proteins and bioactive substances from pomegranate peel (Punica granatum L.) using pressurized liquids and deep eutectic solvents. Innovative food science & emerging technologies, 60, 102314–102324. https://doi.org/10.1016/j.ifset.2020.102314 DOI: https://doi.org/10.1016/j.ifset.2020.102314

Herrera-Hernández, I. M., Sánchez, E., Ramírez-Estrada, C. A., Anchondo-Páez, J. C., & Pérez-Álvarez, S. (2023). Supply of essential and nonessential amino acids, proteins, antioxidants, iron and zinc from the main varieties of beans consumed in Mexico and their potential for biofortification. Notulae scientia biologicae, 15(4), 11733. https://doi.org/10.55779/nsb15411733 DOI: https://doi.org/10.55779/nsb15411733

Hu, K., Huang, H., Li, H., Wei, Y., & Yao, C. (2023). Legume-Derived Bioactive Peptides in Type 2 Diabetes: Opportunities and Challenges. Nutrients, 15(5), 1096. https://doi.org/10.3390/nu15051096 DOI: https://doi.org/10.3390/nu15051096

IDF, International Diabetes Federation (2021). IDF Diabetes Atlas (Tenth edition). International Diabetes Federation. [En línea]. Disponible en: https://diabetesatlas.org/atlas/tenth-edition/. Fecha de consulta: 22 de enero de 2024.

Jakubczyk, A., Karaś, M., Złotek, U., & Szymanowska, U. (2017). Identification of potential inhibitory peptides of enzymes involved in the metabolic syndrome obtained by simulated gastrointestinal digestion of fermented bean (Phaseolus vulgaris L.) seeds. Food research international, 100, 489-496. https://doi.org/10.1016/j.foodres.2017.07.046 DOI: https://doi.org/10.1016/j.foodres.2017.07.046

Jogi, N., Yathisha, U. G., Bhat, I., & Mamatha, B. S. (2022). Antihypertensive activity of orally consumed ACE-I inhibitory peptides. Critical reviews in food science and nutrition, 62(32), 8986-8999. https://doi.org/10.1080/10408398.2021.1938508 DOI: https://doi.org/10.1080/10408398.2021.1938508

Karami, Z. & Duangmal, K. (2023). Health Promoting and Functional Activities of Peptides from Vigna Bean and Common Bean Hydrolysates: Process to Increase Activities and Challenges. Food reviews international, 39(9), 6537-6567. https://doi.org/10.1080/87559129.2022.2122988 DOI: https://doi.org/10.1080/87559129.2022.2122988

Kaur, N. (2018). Solid-phase synthesis of sulfur containing heterocycles. Journal of sulfur chemistry, 39(5), 544–577. https://doi.org/10.1080/17415993.2018.1457673 DOI: https://doi.org/10.1080/17415993.2018.1457673

Kent, S. B. H. (2019). Novel protein science enabled by total chemical synthesis. Protein science, 28(2), 313–328. https://doi.org/10.1002/pro.3533 DOI: https://doi.org/10.1002/pro.3533

Li, T., Shi, C., Zhou, C., Sun, X., Ang, Y., Dong, X., Huang, M., & Zhou, G. (2020). Purification and characterization of novel antioxidant peptides from duck breast protein hydrolysates. LWT, 125, 109215-109227. https://doi.org/10.1016/j.lwt.2020.109215 DOI: https://doi.org/10.1016/j.lwt.2020.109215

Lin, X., Xu, Y., Pan, X., Xu, J., Ding, Y., Sun, X., Song, X., Ren, Y., & Shan, P. F. (2020). Global, regional, and national burden and trend of diabetes in 195 countries and territories: an analysis from 1990 to 2025. Scientific reports, 10(1), 14790. https://doi.org/10.1038/s41598-020-71908-9 DOI: https://doi.org/10.1038/s41598-020-71908-9

Lorenzo, J. M., Munekata, P. E. S., Gómez, B., Barba, F. J., Mora, L., Pérez-Santaescolástica, C., & Toldrá, F. (2018). Bioactive peptides as natural antioxidants in food products – A review. Trends in food science & technology, 79, 136-147. https://doi.org/10.1016/j.tifs.2018.07.003 DOI: https://doi.org/10.1016/j.tifs.2018.07.003

Luna-Vital, D. A., González-de-Mejía, E., Dia, V. P., & Loarca-Piña, G. (2014). Peptides in common bean fractions inhibit human colorectal cancer cells. Food chemistry, 157, 347-355. https://doi.org/10.1016/j.foodchem.2014.02.050 DOI: https://doi.org/10.1016/j.foodchem.2014.02.050

Maestri, E., Pavlicevic, M., Montorsi, M., & Marmiroli, N. (2019). Meta-Analysis for Correlating Structure of Bioactive Peptides in Foods of Animal Origin with Regard to Effect and Stability. Comprehensive reviews in food science and food safety, 18(1), 3-30. https://doi.org/10.1111/1541-4337.12402 DOI: https://doi.org/10.1111/1541-4337.12402

Marciniak, A., Suwal, S., Naderi, N., Pouliot, Y., & Doyen, A. (2018). Enhancing enzymatic hydrolysis of food proteins and production of bioactive peptides using high hydrostatic pressure technology. Trends in food science & technology, 80, 187–198. https://doi.org/10.1016/j.tifs.2018.08.013 DOI: https://doi.org/10.1016/j.tifs.2018.08.013

McClements, D. J. & Grossmann, L. (2021). The science of plant-based foods: Constructing next-generation meat, fish, milk, and egg analogs. Comprehensive reviews in food science and food safety, 20(4), 4049-4100. https://doi.org/10.1111/1541-4337.12771 DOI: https://doi.org/10.1111/1541-4337.12771

Miklas, P. N., Kelly, J. D., & Cichy, K. A. (2022). Dry Bean Breeding and Production Technologies. In M. Siddiq & M. A. Uebersax (Eds.), Dry Beans and Pulses (pp. 29-56). Wiley. https://doi.org/10.1002/9781119776802.ch2 DOI: https://doi.org/10.1002/9781119776802.ch2

Mojica, L., Chen, K., & de-Mejía, E. G. (2015). Impact of Commercial Precooking of Common Bean (Phaseolus vulgaris) on the Generation of Peptides, After Pepsin-Pancreatin Hydrolysis, Capable to Inhibit Dipeptidyl Peptidase-IV. Journal of food science, 80(1). https://doi.org/10.1111/1750-3841.12726 DOI: https://doi.org/10.1111/1750-3841.12726

Mojica, L. & de-Mejía, E. G. (2015). Characterization and Comparison of Protein and Peptide Profiles and their Biological Activities of Improved Common Bean Cultivars (Phaseolus vulgaris L.) from Mexico and Brazil. Plant foods for human nutrition, 70(2), 105-112. https://doi.org/10.1007/s11130-015-0477-6 DOI: https://doi.org/10.1007/s11130-015-0477-6

Mojica, L. & de-Mejía, E. G. (2016). Optimization of enzymatic production of antidiabetic peptides from black bean (Phaseolus vulgaris L.) proteins, their characterization and biological potential. Food and function, 7(2). https://doi.org/10.1039/c5fo01204j DOI: https://doi.org/10.1039/C5FO01204J

Mojica, L., de-Mejia, E. G., Menjivar, M., & Granados-Silvestre, M. Á. (2016). Antidiabetic Effect of Black Bean Peptides through Reduction of Glucose Absorption and Modulation of SGLT1, GLUT2 and DPP-IV in in vitro and in vivo Models. The FASEB journal, 30(S1). https://doi.org/10.1096/fasebj.30.1_supplement.125.6 DOI: https://doi.org/10.1096/fasebj.30.1_supplement.125.6

Mojica, L., Luna-Vital, D. A., & González-de-Mejía, E. (2017). Characterization of peptides from common bean protein isolates and their potential to inhibit markers of type-2 diabetes, hypertension and oxidative stress. Journal of the science of food and agriculture, 97(8), 2401-2410. https://doi.org/10.1002/jsfa.8053 DOI: https://doi.org/10.1002/jsfa.8053

Montoya, C. A., Lallès, J. P., Beebe, S., & Leterme, P. (2010). Phaseolin diversity as a possible strategy to improve the nutritional value of common beans (Phaseolus vulgaris). Food research international, 43(2), 443–449. https://doi.org/10.1016/j.foodres.2009.09.040 DOI: https://doi.org/10.1016/j.foodres.2009.09.040

Mora, L. & Toldrá, F. (2021). Methodologies for peptidomics: Identification and quantification. In F. Toldrá & J. Wu (Eds.), Biologically Active Peptides (pp. 87-102). Elsevier. https://doi.org/10.1016/B978-0-12-821389-6.00010-8 DOI: https://doi.org/10.1016/B978-0-12-821389-6.00010-8

Moreno-Valdespino, C. A., Luna-Vital, D., Camacho-Ruiz, R. M., & Mojica, L. (2020). Bioactive proteins and phytochemicals from legumes: Mechanisms of action preventing obesity and type-2 diabetes. Food research international, 130, 108905. https://doi.org/10.1016/j.foodres.2019.108905 DOI: https://doi.org/10.1016/j.foodres.2019.108905

Mourtas, S., Athanasopoulos, V., Gatos, D., & Barlos, K. (2023). Solid-Phase Synthesis of 2-Benzothi azolyl and 2-(Aminophenyl)benzothiazolyl Amino Acids and Peptides. Molecules, 28(14), 5412–5431. https://doi.org/10.3390/molecules28145412 DOI: https://doi.org/10.3390/molecules28145412

Mudgil, P., Baby, B., Ngoh, Y. Y., Kamal, H., Vijayan, R., Gan, C. Y., & Maqsood, S. (2019). Molecular binding mechanism and identification of novel antihypertensive and anti-inflammatory bioactive peptides from camel milk protein hydrolysates. LWT, 112, 108193-108204. https://doi.org/10.1016/j.lwt.2019.05.091 DOI: https://doi.org/10.1016/j.lwt.2019.05.091

Mullins, A. P. & Arjmandi, B. H. (2021). Health Benefits of Plant-Based Nutrition: Focus on Beans in Cardiometabolic Diseases. Nutrients, 13(2), 519. https://doi.org/10.3390/nu13020519 DOI: https://doi.org/10.3390/nu13020519

Naeem, M., Malik, M. I., Umar, T., Ashraf, S., & Ahmad, A. (2022). A Comprehensive Review About Bioactive Peptides: Sources to Future Perspective. International journal of peptide research and therapeutics, 28(6), 155-175. https://doi.org/10.1007/s10989-022-10465-3 DOI: https://doi.org/10.1007/s10989-022-10465-3

Ngoh, Y. Y. & Gan, C. Y. (2016). Enzyme-assisted extraction and identification of antioxidative and a-amylase inhibitory peptides from Pinto beans (Phaseolus vulgaris cv. Pinto). Food chemistry, 190, 331-337. https://doi.org/10.1016/j.foodchem.2015.05.120 DOI: https://doi.org/10.1016/j.foodchem.2015.05.120

Ngoh, Y. Y. & Gan, C. Y. (2018). Identification of Pinto bean peptides with inhibitory effects on a-amylase and angiotensin converting enzyme (ACE) activities using an integrated bioinformatics-assisted approach. Food chemistry, 267, 124-131. https://doi.org/10.1016/j.foodchem.2017.04.166 DOI: https://doi.org/10.1016/j.foodchem.2017.04.166

Obiro, W. C., Zhang, T., & Jiang, B. (2008). The nutraceutical role of the Phaseolus vulgaris a-amylase inhibitor. British journal of nutrition, 100(1), 1-12. https://doi.org/10.1017/S0007114508879135 DOI: https://doi.org/10.1017/S0007114508879135

Ohara, A., Cason, V. G., Nishide, T. G., Miranda-de-Matos, F., & de-Castro, R. J. S. (2021). Improving the antioxidant and antidiabetic properties of common bean proteins by enzymatic hydrolysis using a blend of proteases. Biocatalysis and biotransformation, 39(2), 100-108. https://doi.org/10.1080/10242422.2020.1789114 DOI: https://doi.org/10.1080/10242422.2020.1789114

Olagunju, A. I., Omoba, O. S., Enujiugha, V. N., Alashi, A. M., & Aluko, R. E. (2018). Pigeon pea enzymatic protein hydrolysates and ultrafiltration peptide fractions as potential sources of antioxidant peptides: An in vitro study. LWT, 97, 269–278. https://doi.org/10.1016/j.lwt.2018.07.003 DOI: https://doi.org/10.1016/j.lwt.2018.07.003

Osborne, T. B. (1924). The vegetable proteins. Longmans, Green and Company.

Oseguera-Toledo, M. E., Gonzalez-de-Mejia, E., & Amaya-Llano, S. L. (2015). Hard-to-cook bean (Phaseolus vulgaris L.) proteins hydrolyzed by alcalase and bromelain produced bioactive peptide fractions that inhibit targets of type-2 diabetes and oxidative stress. Food research international, 76, 839-851. https://doi.org/10.1016/j.foodres.2015.07.046 DOI: https://doi.org/10.1016/j.foodres.2015.07.046

Ozawa, A., Cai, Y., & Lindberg, I. (2007). Production of bioactive peptides in an in vitro system. Analytical biochemistry, 366(2), 182–189. https://doi.org/10.1016/j.ab.2007.04.020 DOI: https://doi.org/10.1016/j.ab.2007.04.020

Peighambardoust, S. H., Karami, Z., Pateiro, M., & Lorenzo, J. M. (2021). A Review on Health-Promoting, Biological, and Functional Aspects of Bioactive Peptides in Food Applications. Biomolecules, 11(5), 631-651. https://doi.org/10.3390/biom11050631 DOI: https://doi.org/10.3390/biom11050631

Piovesana, S., Capriotti, A. L., Cavaliere, C., La Bar-bera, G., Montone, C. M., Zenezini Chiozzi, R., & Laganà, A. (2018). Recent trends and analytical challenges in plant bioactive peptide separation, identification and validation. Analytical and Bioanalytical Chemistry, 410(15), 3425–3444. https://doi.org/10.1007/s00216-018-0852-x DOI: https://doi.org/10.1007/s00216-018-0852-x

Piovesana, S., Capriotti, A. L., Cavaliere, C., La-Barbera, G., Montone, C. M., Zenezini-Chiozzi, R., & Laganà, A. (2019). Sensitive untargeted identification of short hydrophilic peptides by high performance liquid chromatography on porous graphitic carbon coupled to high resolution mass spectrometry. Journal of chromatography A, 1590, 73–79. https://doi.org/10.1016/j.chroma.2018.12.066 DOI: https://doi.org/10.1016/j.chroma.2018.12.066

Polanco-Lugo, E., Dávila-Ortiz, G., Betancur-Ancona, D. A., & Chel-Guerrero, L. A. (2014). Effects of sequential enzymatic hydrolysis on structural, bioactive and functional properties of Phaseolus lunatus protein isolate. Food science and technology, 34(3), 441-448. https://doi.org/10.1590/1678-457x.6349 DOI: https://doi.org/10.1590/1678-457x.6349

Porch, T., Beaver, J., Debouck, D., Jackson, S., Kelly, J., & Dempewolf, H. (2013). Use of Wild Relatives and Closely Related Species to Adapt Common Bean to Climate Change. Agronomy, 3(2), 433-461. https://doi.org/10.3390/agronomy3020433 DOI: https://doi.org/10.3390/agronomy3020433

Rahmi, A. & Arcot, J. (2023). In Vitro Assessment Methods for Antidiabetic Peptides from Legumes: A Review. Foods, 12(3), 631. https://doi.org/10.3390/foods12030631 DOI: https://doi.org/10.3390/foods12030631

Rogalinski, T., Herrmann, S., & Brunner, G. (2005). Production of amino acids from bovine serum albumin by continuous sub-critical water hydrolysis. The journal of supercritical fluids, 36(1), 49–58. https://doi.org/10.1016/j.supflu.2005.03.001 DOI: https://doi.org/10.1016/j.supflu.2005.03.001

Roy, M., Sarker, A., Azad, M. A. K., Shaheb, M. R., & Hoque, M. M. (2020). Evaluation of antioxidant and antimicrobial properties of dark red kidney bean (Phaseolus vulgaris) protein hydrolysates. Journal of food measurement and characterization, 14(1), 303-313. https://doi.org/10.1007/s11694-019-00292-4 DOI: https://doi.org/10.1007/s11694-019-00292-4

Rui, X., Boye, J. I., Simpson, B. K., & Prasher, S. O. (2012). Angiotensin I-converting enzyme inhibitory properties of Phaseolus vulgaris bean hydrolysates: Effects of different thermal and enzymatic digestion treatments. Food research international, 49(2), 739-746. https://doi.org/10.1016/j.foodres.2012.09.025 DOI: https://doi.org/10.1016/j.foodres.2012.09.025

Rui, X., Boye, J. I., Simpson, B. K., & Prasher, S. O. (2013). Purification and characterization of angiotensin I-converting enzyme inhibitory peptides of small red bean (Phaseolus vulgaris) hydrolysates. Journal of functional foods, 5(3), 1116-1124. https://doi.org/10.1016/j.jff.2013.03.008 DOI: https://doi.org/10.1016/j.jff.2013.03.008

Ruiz-Ruiz, J., Davila-Ortiz, G., Chel-Guerrero, L., & Betancur-Ancona, D. (2013). Angiotensin i-con-verting enzyme inhibitory and antioxidant peptide fractions from hard-to-cook bean enzymatic hydrolysates. Journal of food biochemistry, 37(1), 26-35. https://doi.org/10.1111/j.1745-4514.2011.00594.x DOI: https://doi.org/10.1111/j.1745-4514.2011.00594.x

Saad, A. M., Osman, A. O. M., Mohamed, A. S., & Ramadan, M. F. (2020). Enzymatic Hydrolysis of Phaseolus vulgaris Protein Isolate: Characterization of Hydrolysates and Effect on the Quality of Minced Beef During Cold Storage. International journal of peptide research and therapeutics, 26(1), 567–577. https://doi.org/10.1007/s10989-019-09863-x DOI: https://doi.org/10.1007/s10989-019-09863-x

Sánchez, A. & Vázquez, A. (2017). Bioactive peptides: A review. Food quality and safety, 1(1), 29–46. https://doi.org/10.1093/fqs/fyx006 DOI: https://doi.org/10.1093/fqsafe/fyx006

Shabir, I., Dash, K. K., Dar, A. H., Pandey, V. K., Fayaz, U., Srivastava, S., & Nisha, R. (2023). Carbon footprints evaluation for sustainable food processing system development: A comprehensive review. Future Foods, 7, 100215. https://doi.org/10.1016/j.fufo.2023.100215 DOI: https://doi.org/10.1016/j.fufo.2023.100215

Siddiq, M., Uebersax, M. A., & Siddiq, F. (2022). Global Production, Trade, Processing and Nutritional Profile of Dry Beans and Other Pulses. In M. Siddiq & M. A. Uebersax (Eds.), Dry Beans and Pulses (pp. 1–28). Wiley. https://doi.org/10.1002/9781119776802.ch1 DOI: https://doi.org/10.1002/9781119776802.ch1

Su, L., Shi, Y., Yan, M., Xi, Y., & Su, X. (2015). Anticancer bioactive peptides suppress human colorectal tumor cell growth and induce apoptosis via modulating the PARP-p53-Mcl-1 signaling pathway. Acta pharmacologica sinica, 36(12), 1514–1519. https://doi.org/10.1038/aps.2015.80 DOI: https://doi.org/10.1038/aps.2015.80

Su, Y., Chen, S., Liu, S., Wang, Y., Chen, X., Xu, M., Cai, S., Pan, N., Qiao, K., Chen, B., Yang, S., & Liu, Z. (2023). Affinity Purification and Molecular Characterization of Angiotensin-Converting Enzyme (ACE)-Inhibitory Peptides from Takifugu flavidus. Marine drugs, 21(10), 522–536. https://doi.org/10.3390/md21100522 DOI: https://doi.org/10.3390/md21100522

Tacias-Pascacio, V. G., Morellon-Sterling, R., Siar, E. H., Tavano, O., Berenguer-Murcia, Á., & Fernandez-Lafuente, R. (2020). Use of Alcalase in the production of bioactive peptides: A review. International journal of biological macromolecules, 165, 2143-2196. https://doi.org/10.1016/j.ijbiomac.2020.10.060 DOI: https://doi.org/10.1016/j.ijbiomac.2020.10.060

Tak, Y., Kaur, M., Amarowicz, R., Bhatia, S. & Gautam, C. (2021). Pulse Derived Bioactive Peptides as Novel Nutraceuticals: A Review. International journal of peptide research and therapeutics, 27(3), 2057-2068. https://doi.org/10.1007/s10989-021-10234-8 DOI: https://doi.org/10.1007/s10989-021-10234-8

Tawalbeh, D., Al-U’datt, M. H., Wan-Ahmad, W. A. N., Ahmad, F., & Sarbon, N. M. (2023). Recent Advances in In Vitro and In Vivo Studies of Antioxidant, ACE-Inhibitory and Anti-Inflammatory Peptides from Legume Protein Hydrolysates. Molecules, 28(6), 2423-2446. https://doi.org/10.3390/molecules28062423 DOI: https://doi.org/10.3390/molecules28062423

Torruco-Uco, J., Chel-Guerrero, L., Martínez-Ayala, A., Dávila-Ortíz, G., & Betancur-Ancona, D. (2009). Angiotensin-I converting enzyme inhibitory and antioxidant activities of protein hydrolysates from Phaseolus lunatus and Phaseolus vulgaris seeds. LWT, 42(10), 1597-1604. https://doi.org/10.1016/j.lwt.2009.06.006 DOI: https://doi.org/10.1016/j.lwt.2009.06.006

Udeh, C., Ifie, I., Akpodiete, J., & Malomo, S. (2021). Kidney bean protein products as potential antioxidative and antihypertensive alternatives for non-pharmacological inhibition of angiotensin-converting enzymes. Scientific African, 11, e00693–e00715. https://doi.org/10.1016/j.sciaf.2021.e00693 DOI: https://doi.org/10.1016/j.sciaf.2021.e00693

Ulug, S. K., Jahandideh, F., & Wu, J. (2021). Novel technologies for the production of bioactive peptides. Trends in food science & technology, 108, 27–39. https://doi.org/10.1016/j.tifs.2020.12.002 DOI: https://doi.org/10.1016/j.tifs.2020.12.002

Uttara, B., Singh, A., Zamboni, P., & Mahajan, R. (2009). Oxidative Stress and Neurodegenerative Diseases: A Review of Upstream and Downstream Antioxidant Therapeutic Options. Current neuropharmacology, 7(1), 65-74. https://doi.org/10.2174/157015909787602823 DOI: https://doi.org/10.2174/157015909787602823

Valdez-Ortiz, A., Fuentes-Gutiérrez, C. I., Germán-Báez, L. J., Gutiérrez-Dorado, R., & Medina-Godoy, S. (2012). Protein hydrolysates obtained from Azufrado (sulphur yellow) beans (Phaseolus vulgaris): Nutritional, ACE-inhibitory and antioxidative characterization. LWT, 46(1), 91-96. https://doi.org/10.1016/j.lwt.2011.10.021 DOI: https://doi.org/10.1016/j.lwt.2011.10.021

Valencia-Mejía, E., Batista, K. A., Fernández, J. J. A., & Fernandes, K. F. (2019). Antihyperglycemic and hypoglycemic activity of naturally occurring peptides and protein hydrolysates from easy-to-cook and hard-to-cook beans (Phaseolus vulgaris L.). Food research international, 121, 238-246. https://doi.org/10.1016/j.foodres.2019.03.043 DOI: https://doi.org/10.1016/j.foodres.2019.03.043

Vignesh, A., Amal, T. C., Sarvalingam, A., & Vasanth, K. (2024). A review on the influence of nutraceuticals and functional foods on health. Food chemistry advances, 5, 100749.https://doi.org/10.1016/j.focha.2 DOI: https://doi.org/10.1016/j.focha.2024.100749

100749

Wang, Y. & Wang, J. (2020). Modelling and prediction of global noncommunicable diseases. BMC public health, 20(1), 822. https://doi.org/10.1186/s12889-020-08890-4 DOI: https://doi.org/10.1186/s12889-020-08890-4

Wei, H., Xiao, Y., Tong, Y., Chen, Y., Luo, X., Wang, Y., Jin, P., Ma, C., Fu, Z., Guo, H., Zhao, X., & Li, Y. (2019). Therapeutic effect of angelica and its compound formulas for hypertension and the complications: Evidence mapping. Phytomedicine, 59, 152767-152794. https://doi.org/10.1016/j.phymed.2018.11.027 DOI: https://doi.org/10.1016/j.phymed.2018.11.027

Wen, C., Zhang, J., Zhang, H., Duan, Y., & Ma, H. (2020). Plant protein-derived antioxidant peptides: Isolation, identification, mechanism of action and application in food systems: A review. Trends in food science & technology, 105, 308–322. https://doi.org/10.1016/j.tifs.2020.09.019 DOI: https://doi.org/10.1016/j.tifs.2020.09.019

WHO, World health statistics (2023). World Health Statistics 2023: Monitoring Health for the SDGs, Sustainable Development Goals. World Health Organization. [En línea]. Disponible en: https://reliefweb.int/report/world/world-health-statistics-2023-monitoring-health-sdgs-sustainable-developmentgoals?gad_source=1&gclid=CjwKCAiAlcyuBhBnEiwAOGZ2S9HCWFC6XncrPKW5OLUHDQ38OXeAKLAdOeJgqlZPscHTBQ1xUIBHBoCCSIQAvD_BwE Fecha de consulta: 22 de enero de 2024.

Xiang, L., Qiu, Z., Zhao, R., Zheng, Z., & Qiao, X. (2023). Advancement and prospects of production, transport, functional activity and structure-activity relationship of food-derived angiotensin converting enzyme (ACE) inhibitory peptides. Critical reviews in food science and nutrition, 63(10), 1437-1463. https://doi.org/10.1080/10408398.2021.1964433 DOI: https://doi.org/10.1080/10408398.2021.1964433

Yang, F., Chen, X., Huang, M., Yang, Q., Cai, X., Chen, X., Du, M., Huang, J., & Wang, S. (2021). Molecular characteristics and structure–activity relationships of food-derived bioactive peptides. Journal of integrative agriculture, 20(9), 2313-2332. https://doi.org/10.1016/S2095-3119(20)63463-3 DOI: https://doi.org/10.1016/S2095-3119(20)63463-3

Yuan, H., Luo, Z., Ban, Z., Reiter, R. J., Ma, Q., Liang, Z., Yang, M., Li, X., & Li, L. (2022). Bioactive peptides of plant origin: distribution, functionality, and evidence of benefits in food and health. Food & function, 13(6), 3133-3158. https://doi.org/10.1039/D1FO04077D DOI: https://doi.org/10.1039/D1FO04077D

Zamyatnin, A. A. (2018). Structural–functional diversity of the natural oligopeptides. Progress in Biophysics and molecular biology, 133, 1-8. https://doi.org/10.1016/j.pbiomolbio.2017.09.024 DOI: https://doi.org/10.1016/j.pbiomolbio.2017.09.024

Zheng, Z., Li, J., Li, J., Sun, H., & Liu, Y. (2019). Physicochemical and antioxidative characteristics of black bean protein hydrolysates obtained from different enzymes. Food hydrocolloids, 97, 105222-105235. https://doi.org/10.1016/j.foodhyd.2019.105222 DOI: https://doi.org/10.1016/j.foodhyd.2019.105222

Zhu, F., Cao, J., Song, Y., Yu, P., & Su, E. (2023). Plant Protein-Derived Active Peptides: A Comprehensive Review. Journal of agricultural and food chemistry, 71(51), 20479-20499. https://doi.org/10.1021/acs.jafc.3c06882 DOI: https://doi.org/10.1021/acs.jafc.3c06882

Descargas

Publicado

2024-07-19

Cómo citar

Reyes-Bautista, R., Flores-Sierra, J. de J. ., & Xoca-Oroxco, L. Ángel. (2024). Péptidos bioactivos derivados de las semillas de frijol (Phaseolus vulgaris L.). CienciaUAT, 19(1), 182–209. https://doi.org/10.29059/cienciauat.v19i1.1872

Número

Sección

Biotecnología y Ciencias Agropecuarias

Artículos similares

1 2 3 4 5 6 7 8 9 10 > >> 

También puede Iniciar una búsqueda de similitud avanzada para este artículo.