Influence of the habitat on the diversity of insectivorous birds in agroforestry systems embedded in a Mountain Mesophilic Forest

Authors

  • Saúl Ugalde-Lezama Universidad Autónoma Chapingo, Departamento de Suelos, Área de Recursos Naturales Renovables, Texcoco, Estado de México, México. https://orcid.org/0000-0002-0841-211X
  • Claudio Romero-Díaz Universidad Autónoma Chapingo, Departamento de Suelos, Maestría en Ciencias en Agroforestería para el Desarrollo Sostenible, carretera federal México-Texcoco km 38.5, Texcoco, Estado de México, México, C. P. 56230. https://orcid.org/0000-0003-0212-8385
  • Luis Antonio Tarango-Arámbula Colegio de Postgraduados, Campus San Luis Potosí, Postgrado de Innovación en Manejo de Recursos Naturales, San Luis Potosí, San Luis Potosí, México. https://orcid.org/0000-0002-7662-1319
  • Rosa María García-Núñez Universidad Autónoma Chapingo, Departamento de Suelos, Maestría en Ciencias en Agroforestería para el Desarrollo Sostenible, carretera federal México-Texcoco km 38.5, Texcoco, Estado de México, México, C. P. 56230. https://orcid.org/0000-0001-7295-1284

DOI:

https://doi.org/10.29059/cienciauat.v16i2.1529

Keywords:

agroforestry, insectivorous birds, coexistence, endemism, richness

Abstract

Agroforestry systems can represent important ecological niches that contribute to the conservation of bird diversity. The objective of this work was to estimate and compare the diversity and habitat use of insectivorous birds in agroforestry systems located in a montane cloud forest. Bird monitoring was carried out from August 2018 to January 2019 in three habitats: traditional coffee plantation (CT), paddock (PT) and montane cloud forest (BMM). Relative abundance (IAR), richness (Jacknife1), similarity (Jaccard) and diversity (Shannon-Wiener) indices were determined. The IAR presented low values for the three habitats. The Jacknife1 method denoted considerable average richness for the three areas (CT: 33.02, PT: 24.20, BMM: 9.98, CT-PT-BMM: 52.22). The Jaccard technique recorded little similarity in richness, reaffirming the effect of habitat, composition and floristic structure as determining factors, which at the same time established high diversity averages, obtained by the Shannon-Wiener method (H´= 3.3; 3.1 ; 2.27; 3.78, respectively), revealing a relatively stable diversity in the three habitats. For his part, Kruskal-Wallis noticed differences in diversity, but not for richness and abundance. The formation of clusters and groups that found greater similarity between the richness and abundance of species for each applied monitoring was evidenced. Principal component analysis indicated a higher correlation of habitat and vegetation used for feeding in the herbaceous and arboreal stratum, at heights ranging from 5 m to 10 m, using the aerial stratum for flight. The agroforestry systems studied constituted a niche of opportunity where the avifauna found food, nesting and reproduction areas. The implementation of good agroforestry management practices that contribute to the conservation of species is recommended.

References

Adame, D., Legaspi, A. y Jiménez-Piedragil, C. (2019). Avifauna del parque estatal Cerro de la Tortuga, Morelos, México. Revista Mesoamericana. 23(1): 1-16.

Alonso, T. Y., Hernández, M. F. R. y Barrero, M. H. (2018). Diversidad de aves residentes y permanentes asociadas a un pinar natural de Pinus tropicalis y su relación con la estructura vertical de la vegetación. Revista Cubana de Ciencias Forestales. 6(1): 31-44.

Botero, L. y De-la-Ossa, J. (2011). Fauna silvestre asociada a ganado vacuno doble propósito en sistema de silvopastoreo, Pinto, Magdalena, Colombia. Revista MVZ Córdoba. 16(3): 27332741.

Bueno, H. P., Sánchez, C. I., Velásquez, V. M. A., Esquivel, A. G. y Palomo, R. M. (2015). Caracterización de la vegetación de una microcuenca ubicada en la parte media de la RH36. Agrofaz. 15(1): 143-149.

Chará, J., Rivera, J., Barahona, R., Murgueitio, E., Calle, Z., and Giraldo, C. (2019). Intensive silvopastoral systems with Leucaena leucocephala in Latin America. Tropical Grasslands-Forrajes Tropicales. 7(4): 259-266.

Cipriano-Anastasio, J., López-Mancilla, A., Cabrera-Martínez, D. y Capistrán-Barradas, A. (2017). Riqueza y diversidad de aves en un paisaje Agropecuario en el ejido Chalahuiyapa, Huejutla, Hidalgo. Revista Científica Biológico Agropecuaria. 5(1): 105-111.

Connell, J. H. (1978). Diversity in tropical rain forests and coral reefs. Science. 199(4335): 1302-1310.

Colwell, R. K. (2013). Statistical estimation of species richness and shared species from samples. Version 9.1.0 user guide and applications. University of Connecticut, Storrs, C. F. [En línea]. Disponible en: http://viceroy.eeb.uconn.edu/estimates. Fecha de consulta: 20 de abril de 2019.

Cubley, E., Bateman, H., Riddle, S., Holmquist-Johnson, C., and Merritt, D. (2020). Predicting Bird Guilds Using Vegetation Composition and Structure on a Wild and Scenic River in Arizona. Wetlands. 40(1): 1829-1842.

Da-Ponte, E., Mack, B., Wohlfart, C., Rodas, O., Fleckenstein, M., Oppelt, N., ..., and Kuenzer, C. (2017). Assessing forest cover dynamics and forest perception in the Atlantic Forest of Paraguay, combining remote sensing and house hold level data. Forests. 8(10): 1-21.

Espejo, N. y Morales, N. (2019). Variación de la diversidad taxonómica y funcional de la fauna en un bosque seco tropical (bs-T) en diferentes estados de sucesión en el sur del Valle del Magdalena, Huila, Colombia. Caldasia. 41(1): 108-123.

Figueroa, S. B., Pimentel, L. J., Ugalde, L. S., Figueroa, R. O. L., Figueroa, R. K. A. y Tarango, A. L. A. (2019). Aves en sistemas agrícolas con labranza de conservación en el centro-norte de México. Revista Mexicana de Ciencias Agrícolas. 22: 31-42.

Fuentes-Moreno, A., Mogollón-Serrano, M., Servín-Torres, J. L., Serna-Lagunes, R., Leyva-Ovalle, O. R., Llarena-Hernández, R. C., ... y García-Martínez, M. A. (2020). Diversidad de aves en un paisaje antrópico en el centro del estado de Veracruz, México. Tropical and Subtropical Agroecosystems. 23(1): 1-14.

Galicia, G. M. T., Romero, B. E. I., Mera, O. G. y López, V. J. (2019). Efecto del hábitat sobre la avifauna del sistema lagunar costero La Joya-Buenavista, Chiapas, México. Ecosistemas y Recursos Agropecuarios. 6(17): 317-331.

García, M. L. E., Valdez, H. J. I., Luna, C. M. y López, M. R. (2015). Estructura y diversidad arbórea en sistemas agroforestales de café en la Sierra de Atoyac, Veracruz. Madera y Bosques. 21(3): 69-82.

García-Flores, A., Mojica-Pedraza, S., Barreto-Sánchez, S. D., Monroy-Ortiz, C. y Monroy-Martínez, R. (2017). Estudio etnozoológico de las aves y mamíferos silvestres asociados a huertos frutícolas de Zacualpan de Milpas, Morelos, México. Revista de Ciencias Ambientales. 51(2): 110-132.

García-Núñez, R. M., Romero-Díaz, C., Ugalde-Lezama, S. y Tinoco-Rueda, J. A. (2020). Vegetación y estructura del hábitat que determina la dieta de aves insectívoras en sistemas agroforestales. Revista Mexicana de Ciencias Agrícolas. 11(4): 853-864.

Guzmán-Manrique, J. y Flórez-García, A. (2019). Fragmentación del paisaje empleando análisis multitemporal de imágenes de satélite Landsat TM y ETM+ en el municipio de Montelíbano, Córdoba-Colombia. Gestión y Ambiente. 22(1): 31-41.

Haggar, J., Pons, D., Saenz, L., and Vides, M. (2019). Contribution of agroforestry systems to sustaining biodiversity in fragmented forest landscapes. Agriculture, Ecosystems and Environment. 283(1): 1-8.

Hanski, I. (1999). Metapopulation Ecology. Oxford Series in ecology and Evolution. Gran Bretaña: Oxford University Press. 313 Pp.

Huang, R., Pimm, S., and Giri, C. (2020). Using metapopulation theory for practical conservation of mangrove endemic birds. Conservation Biology. 34(1): 266-275.

Ibarra, F. de M. M. y Cruzado, C. E. (2017). Avistamiento de aves en el Campus de la Universidad Ricardo Palma, Lima, Perú. Biotempo. 14(2): 89-99.

Lopes, L., Fernandes, A., Medeiros, M., and Marini, A. (2016). A classification scheme for avian diet types. Journal Field Ornithology. 87(3): 309-322.

López-Segoviano, G., Díaz-Verduzco, L., Arenas-Navarro, M. y Arizmendi, M. (2019). Diversidad estacional de aves en una región prioritaria para la conservación en el centro oeste de la Sierra Madre Occidental. Revista Mexicana de Biodiversidad. 90(1): e902754.

MacArthur, R. H. and Wilson, E. O. (1967). The theory of island biogeography. New Jersey, United States: Princeton University Press. 203 Pp.

Marconi, L. and Armengot, L. (2020). Complex agroforestry systems against biotic homogenization: The case of plants in the herbaceous stratum of cocoa production systems. Agriculture, Ecosystems & Environment. 287(1): e106664.

Medrano-Guzmán, A., Enríquez, P., Zuria, I. y Castellanos-Albores, J. (2020). Riqueza y abundancia de aves en áreas verdes en la ciudad de San Cristóbal de las Casas, Chiapas, México. Revista Peruana de Biología. 27(2): 169-182.

Molina, D., Torres, G. J. y Avelarde, G. M. (2012). Riqueza de aves del Área Natural Protegida Estero El Salado, Puerto Vallarta, Jalisco, México. Huitzil. 13(1): 22-38.

Morales, A., Lizcano, D., Montoya, S., Velásquez, Á., Álvarez, E. y Acevedo-Charry, O. (2021). Diferencias en paisajes sonoros de sistemas silvopastoriles y potreros tradicionales del piedemonte llanero, Meta, Colombia. Biota Colombiana. 22(1): 74-95.

Morales-Martínez, I., Pech-Canché, J. M., Gutiérrez-Vivanco, J., Serrano, A. y Hernández-Hernández, V. H. (2018). Aves de Tuxpan, Veracruz, México: diversidad y complementariedad. Huitzil, Revista Mexicana de Ornitología. 19(2): 210-226.

Moreno, C. E. (2001). Métodos para medir la biodiversidad. M&T– Manuales y Tesis SEA. Zaragoza, España: Ed. CYTED, ORCYT/UNESCO & SEA. 84 Pp.

Naoki, K., Gómez, M. I. y Schneider, M. (2017). Selección de diferentes sistemas de producción de cacao (Theobroma cacao, Malvaceae) por aves en Alto Beni, Bolivia - una prueba de cafetería en el campo. Ecología en Bolivia. 52(2): 100-115.

Narango, D., Tallamy, D., Snyder, K., and Rice, R. (2019). Canopy tree preference by insectivorous birds in shade-coffee farms: Implications for migratory bird conservation. Biotropica. 51(3): 387-398.

Navarro, S. A. G., Rebón, G. M. F., Gordillo, M. A., Peterson, A. T., Berlanga, G. H. y Sánchez, G. L. A. (2014). Biodiversidad de aves en México. Revista Mexicana de Biodiversidad. 85(1): 476-495.

Nell, C., Abdala-Roberts, L., Parra-Tabla, V., and Mooney, K. (2018). Tropical tree diversity mediates foraging and predatory effects of insectivorous birds. Proceedings Royal Society Publishing B. 285(1): 1-7.

Nyffeler, M., Şekercioğlu, C., and Whelan, C. (2018). Insectivorous birds consume an estimated 400–500 million tons of prey annually. The Science of Nature. 105(1): 47.

Olsen, J., Judge, D., Trost, S., Rose, A., and Debus, S. (2018). Diets of breeding Brown Goshawks Accipiter fasciatus and Collared Sparrowhawks A. cirrocephalus near Canberra, Australia and comparisons with other regions and raptors. Corella. 42(1): 18-28.

Ordóñez-Delgado, L., Freile, J. F., Guevara, E. A., Cisneros-Heredia, D. y Santander, T. (2017). Memorias de la V Reunión Ecuatoriana de Ornitología. Revista Ecuatoriana de Ornitología. 1(1): 1-38.

Ortiz-Pulido, R. (2018). ¿Qué especies de aves están en riesgo en México? Huitzil, Revista Mexicana de Ornitología. 19(2): 237-272.

Perez, J., Faria, D., and Morante-Filho, J. C. (2021). Landscape composition is more important than local vegetation structure for understory birds in cocoa agroforestry systems. Forest Ecology and Management. 481(1): 1-9.

Pérez, B. S. H., Hernández, M. F. R., Pérez, H. A. y Cué, R. M. (2015). Diversidad y abundancia de ensamblajes de aves asociadas a bosques semideciduos y pino encino del parque nacional viñales. Revista Cubana de Ciencias Forestales. 4(1): 2-17.

Ponce, C. L. P., Aguilar, V. B. C., Rodríguez, T. D. A., López, P. E. y Santillán, P. J. (2012). Influencia del fuego sobre la riqueza y diversidad de aves en un bosque templado en Puebla. Revista Mexicana de Ciencias Forestales. 3(10): 65-76.

Ramírez-Albores, J. (2006). Variación en la composición de comunidades de aves en la Reserva de la Biosfera Montes Azules y áreas adyacentes, Chiapas, México. Biota Neotropica. 6(2): 1-19.

Ramírez-Albores, J. (2010). Diversidad de aves de hábitats naturales y modificados en un paisaje de la Depresión Central de Chiapas, México. Revista de Biología Tropical. 58(1): 511-528.

Ramos, R. R., Sánchez, H. R. y Gama, C. L. M. (2016). Análisis de cambios de uso del suelo en el municipio costero de Comalcalco, Tabasco, México. Ecosistemas y Recursos Agropecuarios. 3(8): 151-160.

Sáenz, J. C., Villatoro, F., Ibrahim, M., Fajardo, D. y Pérez, M. (2006). Relación entre las comunidades de aves y la vegetación en agropaisajes dominados por la ganadería en Costa Rica, Nicaragua y Colombia. Agroforestería en las Américas. 45(1): 37-48.

Salas, Á. D. y Mancera-Rodríguez, N. J. (2020). Aves como indicadoras ecológicas de etapas sucesionales en un bosque secundario, Antioquia, Colombia. Revista de Biología Tropical. 68(1): 23-39.

Sánchez, C. V. (2017). Uso de hábitat de aves migratorias en el bosque sucesional de Cocha Cashu (Río Manu, Perú). Revista Científica de la Facultad de Ciencias Biológicas. 37(1): 36-45.

Sánchez, D., Vilchez, S. J. y DeClerck, E. (2011). Complementariedad de la vegetación como provisión de recursos para la comunidad de aves en el agropaisaje de Copán Ruinas, Honduras. Agroforestería en las Américas. 48(1): 130-136.

Sánchez, G., Gosálvez, R. U. y Florín, M. (2018). Análisis de metapoblaciones de aves acuáticas en la Mancha Húmeda: importancia de la disponibilidad de humedales. Cuadernos Geográficos. 57(2): 92-112.

Sandoval, L. (2019). Variación mensual y anual de la riqueza y abundancia de aves en un mosaico agrícola periurbano tropical. Biología Tropical. 67(2): 298-314.

Santos, B. A. R., Hernández, R. A. L., Lavariega, M. C. y Gómez, U. R. M. (2013). Diversidad de aves en cultivares de Santa María Yahuiche, Sierra Madre de Oaxaca, México. Revista Mexicana de Ciencias Agrícolas. 6: 1241-1250.

SAS, Statistical Analysis System (2009). JMP version 8.0.2. SAS Institute. Cary, NC, USA. [En línea]. Disponible en: https://www.jmp.com/es_mx/download-jmp-free-trial.html. Fecha de consulta: 20 de abril de 2019.

SEMARNAT, Secretaría de Medio Ambiente y Recursos Naturales (2010). Norma Oficial Mexicana NOM-059-SEMARNAT-2010, Protección ambiental– Especies nativas de México de flora y fauna silvestres– Categorías de riesgo y especificaciones para su inclusión, exclusión o cambio– Lista de especies en riesgo, en Diario Oficial de la Federación. [En línea]. Disponible en: https://www.dof.gob.mx/nota_detalle.php?codigo=5578808&fecha=14/11/2019. Fecha de consulta: 6 de febrero de 2021.

Sherry, T., Kent, C., Sánchez, N., and Şekercioğlu, C. (2020). Insectivorous birds in the Neotropics: Ecological radiations, specialization, and coexistence in species-rich communities. The Auk: Ornithological Advances. 137(1):1-27.

Sommer, N., Moody, N. M., Lantz, S. M., Leu, M., Karubian, J., and Swaddle, J. P. (2018). Redbacked fairywrens adjust habitat use in response to dry season fires. Austral Ecology. 43(8): 876-889.

Sow, A., Seye, D., Faye, E., Benoit, L., Galan, M., Haran, J., and Brévault, T. (2020). Birds and bats contribute to natural regulation of the millet head miner in tree-crop agroforestry systems. Crop Protection. 132(1): 1-8.

Tarbox, B., Robinson, S., Loiselle, B., and Flory, L. (2018). Foraging ecology and flocking behavior of insectivorous forest birds inform management of Andean silvopastures for conservation. The Condor Ornithologycal Applications. 120(1): 787-802.

Tobar, C., Meier, D., Rau, J., Ríos-Henríquez, C., Pavés, H. y Santibáñez, A. (2021). Variación estacional de aves en el humedal de Trumao, centro-sur de Chile. Iheringia Série Zoológica. 111 (1): e2021002.

Tomasevic, J. A. and Marzluff, J. M. (2020). Roosting, reproduction, and survivorship of Pileated Woodpeckers (Dryocopus pileatus) in a suburban setting. Avian Conservation and Ecology. 15(1): 13.

Velásquez, V. A. Ricaurte, L. F., Lara, F., Cruz, E. J., Tenorio, G. A. y Correa, M. (2012). Lista anotada de las aves de los humedales de la parte alta del Departamento de Caqueta. Manejo de fauna silvestre en Amazonía y Latino-américa. 1(1): 320-329.

Vilchez, S. J., Harvey, C., Sánchez, D., Medina, A. y Hernández, B. (2017). Diversidad de aves en un paisaje fragmentado de bosque seco en Rivas, Nicaragua. Encuentro. 1: 60-75.

Villavicencio-Enríquez, E. (2012). Caracterización agroforestal en sistemas de café tradicional y rústico, en San Miguel, Veracruz, México. Revista Chapingo Serie Ciencias Forestales y del Ambiente. 19(1): 67-80.

Wilcox, B. A. and Murphy, D. D. (1985). Conservation Strategy: The effects of fragmentation on extinction. The American Naturalist. 125(6): 879-887.

XLSTAT, Software de Análisis Estadístico (2018). Statistical and Data Analysis Solution, by Addinsoft, version 2018.7.5. [En línea]. Disponible en: https://www.xlstat.com. Fecha de consulta: 20 de abril de 2019.

Xu, Y., Si, Y., Wang, Y., Zhang, Y., Prins, H. H. T., Cao, L., and De-Boer, W. F. (2019). Loss of functional connectivity in migration networks induces population decline in migratory birds. Ecological Applications. 29(7): 1-10.

Yashmita-Ulman, S. y Kumar, A. (2018). Sistemas agroforestales como hábitat para especies de aves: evaluación de su papel en la conservación. Actas de la Sociedad Zoológica. 71(1): 127-145.

Published

2022-01-31

How to Cite

Ugalde-Lezama, S., Romero-Díaz, C., Tarango-Arámbula, L. A., & García-Núñez, R. M. (2022). Influence of the habitat on the diversity of insectivorous birds in agroforestry systems embedded in a Mountain Mesophilic Forest. CienciaUAT, 16(2), 06-25. https://doi.org/10.29059/cienciauat.v16i2.1529

Issue

Section

Biology and Chemistry