Biodegradable antifungal coating based on chitosan and citrus essential oil for the conservation of papaya (Carica papaya L.) in postharvest

Authors

  • María del Rosario García-Mateos Universidad Autónoma Chapingo, Instituto de Horticultura, Departamento de Fitotecnia, carretera México-Texcoco km 38.5, Chapingo, Estado de México, C. P. 56230. https://orcid.org/0000-0003-2552-3951
  • Joel Corrales-García Universidad Autónoma Chapingo, Departamento de Ingeniería Agroindustrial, Chapingo, Estado de México, México.
  • Teresita Cornejo-Vivar Universidad Autónoma Chapingo, Departamento de Ingeniería Agroindustrial, Chapingo, Estado de México, México.
  • Lyzbeth Hernández-Ramos Secretaría de Agricultura y Desarrollo Rural, Dirección General de Fomento, Jefatura de Ornamentales, Ciudad de México, México.

DOI:

https://doi.org/10.29059/cienciauat.v17i2.1703

Keywords:

essential oil, citrus, papaya, chitosan, anthracnose

Abstract

Papaya is a highly perishable climacteric fruit. Anthracnose, a disease provoked by fungus, is one of the main causes of postharvest losses. The activity of plant extracts has allowed the inhibition of the development of microorganisms; in particular, the antifungal activity of essential oils has been reported. The aim of this research was to evaluate the effect of a biodegradable antifungal coating based on chitosan with citrus essential oil in the physicochemical and physiological properties and the antifungal activity of postharvest papaya (Carica papaya L.). The coating was prepared with chitosan, glycerol, acetic acid, essential oil of Citrus reticulata (0.5 %, 1.0 % and 1.5 %) and Tween® 80. The solution was applied with a brush to the epidermis of the postharvest papaya fruits and stored at room temperature (24 °C ± 2 °C) for 10 d. The variables evaluated in the fruits were color, pH, °Brix, firmness, weight loss, production of CO2 and ethylene and anthracnose damage. An analysis of variance (ANOVA) was performed under a completely randomized design and a comparison of Tukey means (P < 0.05). The coating applied delayed the color change of the epidermis of the papaya fruits, these maintained the high firmness values with respect to the control fruits. The changes were associated with the modification of the respiration rate and ethylene production of the coated fruits. The chitosan matrix containing essential oils used as a coating significantly improved shelf life of papaya and decreased anthracnose damage by 80 %.

References

Abbott, W. S. (1925). A method of computing the effectiveness of an insecticide. Journal of Economic Entomology. 18(2): 265-267.

Acosta, R. M., Nieto-Ángel, D., Domínguez-Álvarez, J. L. y Delgadillo-Sánchez, F. (2001). Calidad y tolerancia en frutos de papaya (Carica papaya L.) a la inoculación del hongo Colletotricum gloeosporioides Penz., en postcosecha. Revista Chapingo Serie Horticultura. 7(1): 119-124.

Alam, A., Tripathi, A., Sharma, V., and Sharma, N. (2017). Essential oils: A novel consumer and ecofriendly approach to combat postharvest phytopathogens. Journal of Advances in Biology & Biotechnology. 11(1): 1-16.

AOAC, Association of Official Analytical Chemist (1990). Official Methods of Analysis. (Thirtenth edition). Washington D.C., USA: AOAC.1023 Pp.

Araya, A. y Meneses, L. (2010). Influencia de algunos ácidos sobre las propiedades Físico-químicas de películas de quitosano obtenidas a partir de desechos de cangrejo. Revista Tecnológica ESPOL. 23(1): 143-148.

Ayón-Reyna, L. E., González-Robles, A., Rendón-Maldonado, J. G., Báez-Flores, M. E., López-López, M. E., and Vega-García, M. O. (2017). Application of a hydrothermal-calcium chloride treatment to inhibit postharvest anthracnose development in papaya. Postharvest Biology and Technology. 124: 85-90.

Badillo, V. M. and Leal, F. (2019). Taxonomy and botany of the Caricaceae. Horticultural Reviews. 47: 289-323.

Barnett, H. L. and Hunter, B. B. (1998). Illustrated Genera of Imperfect Fungi. (Fourth edition). APS Press, St. Paul. 218 Pp.

Barragán-Iglesias, J., Méndez-Lagunas, L. L., and Rodríguez-Ramírez, J. (2018). Ripeness indexes and physicochemical changes of papaya (Carica papaya L. cv. Maradol) during ripening on-tree. Scientia Horticulturae. 236: 272-278.

Bauer, A. W., Kirby, M. M., Sherris, J. C., and Turck, M. (1966). Antibiotic susceptibility testing by a standardized single disk method. American Journal Clinical Pathology. 45: 493-496.

Bauer, J. L., Villegas, L. F., and Zucchetti, A. (2022). Applications of chitosan in agriculture, industry, and health. South Florida Journal of Environmental and Animal Science. 2(2): 37-45.

Boaro, C. S. F., Vieira, M. A. R., Campos, F. G., Ferreira,G., Chacón, I. D. C., and Marques, M. O. M. (2019). Factors influencing the production and chemical composition of essential oils in aromatic plants from Brazil, in Essential Oil Research. [En línea]. Disponible en: https://doi.org/10.1007/978-3-030-16546-8_2. Fecha de consulta: 20 de enero de 2020.

Bosquez-Molina, E., Ronquillo-de-Jesús, E., Bautista-Baños, S., Verde-Calvo, J. R., and Morales-López, J. (2010). Evaluation of the inhibitory effect of essential oils against Colletotrichum gloeosporioides and Rhizopus stolonifer in stored papaya fruit and their possible application in coatings. Postharvest Biology and Technology. 57(2): 132-137.

Burt, S. A. (2004). Essential oils: their antibacterial properties and potential applications in foods – a review. International Journal of Food Microbiology. 94: 223-253.

Calero, N., Muñoz, J. y Guerrero, A. (2013). Efecto del pH en emulsiones o/w formuladas con proteína de patata y quitosano. Grasas y Aceites. 64(1): 15-21.

Cunha, M., Passos, F. R., Mendes, F. Q., Pigozzi, M. T., and Carvalho, A. M. X. (2018). Propolis extract from different botanical sources in postharvest conservation of papaya, in Acta Scientiarum. Technology. [En línea]. Disponible en: https://doi.org/10.4025/actascitechnol.v40i1.31074. Fecha de consulta: 20 de enero de 2020.

Dos-Passos-Braga, S., Lundgren, G. A., Macedo, S. A., Tavares, J. F., dos-Santos-Vieira W. A., Câmara, M. P. S., and de-Souza, E. L. (2019). Application of coatings formed by chitosan and Mentha essential oils to control anthracnose caused by Colletotrichum gloesporioides and C. brevisporum in papaya (Carica papaya L.) fruit. International Journal of Biological Macromolecules. 139: 631-639.

Dukare, A. S., Paul, S., Nambi, V. E., Gupta, R. H., Singh, R., Sharma, K., and Vishwakarma, R. K. (2018). Exploitation of microbial antagonists for the control of postharvest diseases of fruits: a review. Critical Reviews in Food Science and Nutrition. 59(9): 1498-1513.

Dutra, K., de-Oliveira, J. V., Navarro, D. M. D. A. F., and Santos, J. P. O. (2016). Control of Callosobruchus maculatus (FABR.) (Coleoptera: Chrysomelidae: Bruchinae) in Vigna unguiculata (L.) WALP. with essential oils from four Citrus spp. plants. Journal of Stored Products Research. 68: 25-32.

El-Ghaouth, A., Arul, J., Asselin, A., and Benhamou, N. (1992). Antifungal activity of chitosan on post-harvest pathogens: induction of morphological and cytological alterations in Rhizopus stolonifer. Mycological Research. 96: 769-772.

Fernández, V., Bautista, B., Fernández, V., Ocampo, R., García, P. y Falcón, R. (2015). Películas y recubrimientos comestibles: una alternativa favorable en la conservación poscosecha de frutas y hortalizas. Revista Ciencias Técnicas Agropecuarias. 24(3): 52-57.

Hernández, C. H., Águila, A. E., Flores, A. O., Viveros, N., E. L. y Ramos, C. E. (2009). Obtención y caracterización de quitosano a partir de exoesqueletos de camarón. Superficies y Vacío. 22(3): 57-60.

Hernández-Lauzardo, A. N., Bautista-Baños, S., Velázquez-del-Valle, M. G., Rodríguez-Ambriz, A. L., Corona-Rangel, M. L., Solano-Navarro, A. y Bosquez-Molina, E. (2005). Potencial del quitosano en el control de las enfermedades postcosecha. Revista Mexicana de Fitopatología. 23(2): 198-205.

Hernández-Ochoa, L., Gonzáles-Gonzáles, A., Gutiérrez-Méndez, N., Muñoz-Castellanos, L. N. y Quintero-Ramos, A. (2011). Estudio de la actividad antibacteriana de películas elaboradas con quitosano a diferentes pesos moleculares incorporando aceites esenciales y extractos de especias como agentes antimicrobianos. Revista Mexicana de Ingeniería Química. 10(3): 455-463.

Lota, M. L., Serra, D. R., Tomi, F., and Casanova, J. (2001). Chemical variability of peel and leaf essential oils of 15 species of mandarins. Journal of Applied Polymer Science. 112: 2166-2178.

Martínez-Tenorio, Y. y López-Malo, V. (2011). Envases activos con agentes antimicrobianos y su aplicación en los alimentos. Temas selectos de Ingeniería de Alimentos. 5(2): 1-12.

Mercado-Ruiz, J. N., Guzmán-Reyes, I. C., García-Robles, J. M., Salinas-Hernández, R. M. y Báez-Sañudo, R. (2014). Efecto del recubrimiento con ceras comestibles en fruto de papaya (Carica papaya L.) sobre su calidad durante el almacenamiento. Revista Iberoamericana de Tecnología Poscosecha. 15(1): 31-40.

Miranda, A. D., Alvis, A. y Arrazola, G. (2014). Efectos de dos recubrimientos sobre la calidad de la papaya (Carica papaya L.) variedad Tainung. Temas Agrarios. 19(1): 7-18.

Nayak, S. L., Sethi, S., Sharma, R. R., and Prajapati, U. (2019). Active edible coatings for fresh fruits and vegetables. In T. Gutiérrez (Ed.), Polymers for AgriFood Applications (pp. 417-432). USA. Springer International Publishing, Cham.

Osuna-García, J. A., Beltrán, J. A. y Pérez-Barraza, M. H. (2005). Mejoramiento de vida de anaquel y calidad de papaya “Maradol” con 1-metilciclopropeno (1-MCP). Revista Chapingo Serie Horticultura. 11(1): 7-12.

Palma-Guerreo, J., Jansson, H., Salinas, J., and López-Llorca, L. (2008). Effect of chitosan on hyphal and spore germination of plant pathogenic and biocontrol fungi. Journal of Applied Microbiology. 104(2): 541-553.

Philibert, T., Lee, B. H., and Fabien, N. (2016). Current Status and New Perspectives on Chitin and Chitosan as Functional Biopolymers. Applied Biochemistry and Biotechnology. 181(4): 1314-1337.

Pontigo-Suárez, A. G., Trejo-Márquez, M. A. y Lira-Vargas, A. A. (2015). Desarrollo de un recubrimiento con efecto antifúngico y antibacterial a base de aceite de orégano para conservación de papaya maradol. Revista Iberoamericana de Tecnología Poscosecha. 16(1): 58-63.

Rabari, V. P., Chudashama, K. S., and Thaker V. S. (2017). In vitro Screening of 75 Essential Oils Against Colletotrichum gloeosporioides: A Causal Agent of Anthracnose Disease of Mango. International Journal of Fruit Science. 18(1): 1-13.

Rahimi, R., ValizadehKaji, B., Khadivi, A., and Shahrjerdi, I. (2019). Effect of chitosan and thymol essential oil on quality maintenance and shelf-life extension of peach fruits cv. ‘Zaferani’. Journal of Horticulture and Postharvest Research. 2(2): 143-156.

Ramos, G. M., Bautista, B. S., Barrera, N. L., Bosquez, M. E., Alia, T. I. A. y Estrada, C. M. (2010). Compuestos antimicrobianos adicionados en recubrimientos comestibles para uso en productos hortofrutícolas. Revista Mexicana de Fitopatología. 28(1): 44-57.

Rojas-Fernández, M. M., Corzo-López, M., Sánchez-Pérez, Y., Brito, D., Montes-de-Oca, R., Martínez, Y. y Pino-Pérez, O. (2014). Actividad antibacteriana de aceites esenciales sobre Pectobacterium carotovorum subbsp. carotovorum. Revista Protección Vegetal. 29(3): 197-203.

Rodríguez-Delgado, M. M., Martinez-Ledezma, C., and Villarreal-Chiu, J. F. (2019). Advances in biocoaters for nanoparticles and biodegradable delivery systems in agriculture and food industry: Toward a safer and eco-friendly nanotechnology. [En línea]. Disponible en: https://doi.org/10.1007/978-3-030-17061-5_14. Fecha de consulta: 21 de enero de 2020.

Sharifi-Rad, J., Sureda, A., Tenore, J. C., Daglia, M., Sharifi-Rad, M., Valussi, M., …, and Iriti, M. (2017). Biological activities of essential oils: From plant chemoecology to traditional healing systems. Molecules. 22(1): 70.

Sharma, N. and Tripathi, A. (2006). Fungitoxicity of the essential oil of Citrus sinensis on post-harvest pathogens. World Journal of Microbiology and Biotechnology. 22(6): 587-593.

Santamaría, B. F., Díaz, P. R., Gutiérrez, A. O., Santamaría, F. J. y Larqué, S. A. (2011). Control de dos especies de Colletotricum causantes de antracnosis en frutos de papaya maradol. Revista Mexicana de Ciencias Agrícolas. 2(5): 631-643.

Santamaría, B. F., Díaz, P. R., Sauri, D. E., Espadas, G. F., Santamaría, J. M. y Larqué, S. A. (2009b). Características de calidad de frutos de papaya maradol en la madurez de consumo. Agricultura Técnica en México. 35(3): 347-353.

Santamaría, B. F., Sauri, D. E., Espadas, G. E., Díaz, P. R., Larqué, S. A., and Santamaría, J. M. (2009a). Postharverst ripening and maturity indexes for maradol papaya. Interciencia. 34(8): 583-588.

Sañudo, B. J. A., Siller, C. J., Osuna, E. T., Muy, R. M., López, A. G. y Labavitch, J. (2008). Control de la maduración en frutos de papaya (Carica papaya L.) con 1-metilciclopropeno y ácido 2-cloroetil fosfónico. Revista Fitotecnia Mexicana. 31(2): 141-147.

Shakya, R. and Lal, M. A. (2018). Fruit Development and Ripening. In Plant Physiology, Development and Metabolism. Springer, Singapur. 857-883 Pp.

Singh, M., Pandey, K. D., Rathore, A. C., Sharma, S. P., and Kumar, R. (2022). Bacterial antagonists: Effective tools for the management of postharvest diseases in fruits, vegetables, and food grains. In A. Kumar (Ed.), Microbial Biocontrol: Food Security and Post-Harvest Management (pp. 259-309). USA. Springer International Publishing, Cham.

Télles-Pichardo, R., Cruz-Aldaco, K., Ochoa-Reyes, E., Aguilar, C. N. y Rojas, R. (2013). Cubiertas comestibles de cera y polifenoles de candelilla: una alternativa de conservación de papaya (Carica papaya L.). Revista Científica de la Universidad Autónoma de Coahuila. 5(10): 1-7.

Vela-Gutiérrez, G., Del-Ángel-Coronel, O. A., Cabrera-Ponce, J. L., Gómez-Lim, M. A. y García-Galindo, H. S. (2016). Transformación de embriones de papaya maradol (Carica papaya L.) con el gen 9/13 de la lipoxigenasa. Revista Internacional de Investigación e Innovación Tecnológica. 4(22): 1-14.

Velasco-Ulloa, B., Mercado-Ruiz, J. N., García-Robles, J. M. y Báez-Sañudo, R. (2012). Respuesta física y fisiológica a la aplicación de cera comestibleen mangos (Magnifera indica L.) cvs. Tommy Atkins y Keitt. Revista Iberoamericana de Tecnología Postcosecha. 13(2): 130-139.

Wang, D., Zhang, J., Jia, X., Xin, L., and Zhai, H. (2019). Antifungal effects and potential mechanism of essential oils on Collelotrichum gloeosporioides in vitro and in vivo. Molecules. 24(18): 3386.

Yuan, G., Chen, X., and Li, D. (2016). Chitosan films and coatings containing essential oils: The antioxidant and antimicrobial activity, and application in food systems. Food Research International. 89: 117-128.

Published

2022-12-16

How to Cite

García-Mateos, M. del R. ., Corrales-García, J., Cornejo-Vivar, T., & Hernández-Ramos, L. (2022). Biodegradable antifungal coating based on chitosan and citrus essential oil for the conservation of papaya (Carica papaya L.) in postharvest. CienciaUAT, 17(2), 165–180. https://doi.org/10.29059/cienciauat.v17i2.1703

Issue

Section

Biotechnology and Agricultural Sciences

Similar Articles

<< < 1 2 3 4 5 6 

You may also start an advanced similarity search for this article.