Forthcoming

Association of RGB vegetation indices with yield and nitrogen dose in bread wheat

Authors

  • Andrés Mandujano-Bueno Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias, Campo Experimental Bajío, km 6.5, carretera Celaya-San Miguel de Allende s/n, Celaya, Guanajuato, México, C. P. 38110.
  • Juan Francisco Buenrostro-Rodríguez Centro Internacional para el mejoramiento de Maíz Trigo, El Batán Texcoco, Estado de México, México, C. P. 56237. https://orcid.org/0000-0001-5077-5953
  • Víctor Montero-Tavera Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias, Campo Experimental Bajío, km 6.5, carretera Celaya-San Miguel de Allende s/n, Celaya, Guanajuato, México, C. P. 38110. https://orcid.org/0000-0002-5459-8189

DOI:

https://doi.org/10.29059/cienciauat.v19i2.1925

Keywords:

bread wheat, yield, nitrogen fertilization, vegetation indices, orthophotos

Abstract

Wheat (Triticum aestivum) is an industrial crop of primary importance for Mexico, selfsufficient in the production of durum wheat, but with a deficit of 5 200 000 T of bread wheat per year. This problem is multifactorial, some of the most important components are the difference between current and potential yield, as well as poormanagement of nitrogen fertilization. The objective of this research was to determine if there is a significant correlation between Vegetation Indices estimated from visible light orthophotos with the yield and nitrogen needs of bread wheat to complement or replace the NDVI indices obtained with the Greenseeker™ infrared sensor, and thus contribute to the rational nutrition of plants. For this purpose, the Alondra F2014 variety was grown in Celaya, Guanajuato, Mexico and six nitrogen fertilization treatments were applied (0 kg/ha to 300 kg/ha of nitrogen, in increments of 60 kg) under a randomized complete block design with three repetitions, during the FW 2021-2022 and FW 2022-2023 crop cycles. The estimated variables were grain yield, the GLI, TGI, VARI, GRVI and RGBVI vegetation indices, calculated on orthophotos constructed from images obtained by an Unmanned Aerial Vehicle, and the NDVI indices as a control, measured with the GreenSeeker™ sensor; all of them were estimated weekly from 20 d after sowing and until physiological maturity. The results show high correlation coefficients, ≥ 0.90 between all variables, and high coefficients of determination average at the tillage stage from 0.80 to 0.91 between RGB and NDVI indices and (R2) ≥ 0.86 between VIV indices and yield. Therefore, VIV indices, especially VARI, can be used instead of NDVI as a tool to efficiently identify crop needs.

References

Aula, L., Omara, P., Nambi, E., Oyebiyi, F. B., & Raun, W. R. (2020). Review of active optical sensors for improving winter wheat nitrogen use efficiency. Agronomy, 10, 1157. https://doi.org/10.3390/agronomy10081157 DOI: https://doi.org/10.3390/agronomy10081157

Aula, L., Omara, P., Nambi, E., Oyebiyi, F. B., Dhillon, J., Eickhoff, E., Carpenter, J., & Raun, W. R. (2021). Active optical sensor measurements and weather variables for predicting winter wheat yield. Agronomy Journal, 113, 2742-2751. https://doi.org/10.1002/agj2.20620 DOI: https://doi.org/10.1002/agj2.20620

Balážová, K., Chyba, J., Kumhálová, J., Mašek, J., & Petrásek, S. (2021). Monitoring of Khorasan (Triticum turgidum ssp. turanicum) and modern Kabot spring wheat (Triticum aestivum) varieties by UAV and sensor technologies under different soil tillage. Agronomy, 11, 1348. https://doi.org/10.3390/agronomy11071348 DOI: https://doi.org/10.3390/agronomy11071348

Bendig, J., Bolten, A., & Bareth, G. (2013). UAV-based imaging for multitemporal, very high resolution crop surface models to monitor crop growth variability. PFG Photogrammetrie, Fernerkundung, Geoinformation, 6, 551-562. DOI: https://doi.org/10.1127/1432-8364/2013/0200

Burton, A., Häner, L. L., Schaad, N., Strebel, S., Vuille-dit-Bille, N., de-Figueiredo, B. P., Holzkämper, A., Pellet, D., & Herrera, J. M. (2024). Evaluating nitrogen fertilization strategies to optimize yield and grain nitrogen content in top winter wheat varieties across Switzerland. Field Crops Research, 307, 109251. DOI: https://doi.org/10.1016/j.fcr.2024.109251

Buters, T. M., Belton, D., & Cross, A. T. (2019). Multi-sensor UAV tracking of individual seedlings and seedling communities at millimeter accuracy. Drones, 3, 81. DOI: https://doi.org/10.3390/drones3040081

De-Ocampo, A. L. P., Bandala, A. A., & Dadios, E. P. (2019). Estimation of triangular greenness index for unknown peak wavelength sensitivity of CMOS-acquired crop images. In 2019 IEEE 11th International Conference on Humanoid, Nanotechnology, Information Technology, Communication and Control, Environment, and Management (HNICEM) (pp. 1-5). IEEE. DOI: https://doi.org/10.1109/HNICEM48295.2019.9072796

De-Sousa, T., Ribeiro, M., Sabença, C., & Igrejas, G. (2021). The 10,000-year success story of wheat! Foods, 10, 2124. https://doi.org/10.3390/foods10092124 DOI: https://doi.org/10.3390/foods10092124

Fischer, T., Ammar, K., Monasterio, I. O., Monjardino, M., Singh, R., & Verhulst, N. (2022). Sixty years of irrigated wheat yield increase in the Yaqui Valley of Mexico: past drivers, prospects and sustainability. Field Crops Research, 283, 108528. https://doi.org/10.1016/j.fcr.2022.108528 DOI: https://doi.org/10.1016/j.fcr.2022.108528

García, de M. E. (2004). Modificaciones al sistema de clasificación climática de Köppen. Instituto de Geografía Serie Libros Núm. 6. Universidad Nacional Autónoma de México.

Gitelson, A. A., Stark, R., Grits, U., Rundquist, D., Kaufman, Y., & Derry, D. (2002). Vegetation and soil lines invisible spectral space: a concept and technique for remote estimation of vegetation fraction. International Journal of Remote Sensing, 23, 2537-2562. https://doi.org/10.1080/01431160110107806 DOI: https://doi.org/10.1080/01431160110107806

Gongora-Canul, C., Salgado, J. D., Singh, D., Cruz, A. P., Cotrozzi, L., Couture, J., Rivadeneira, M. G., Cruppe, G., Valent, B., Todd, T., Poland, J., & Cruz, C. D. (2019). Temporal dynamics of wheat blast epidemics and agreement between remotely sensed data measurements and visual estimations of wheat spike blast (WSB) under field conditions. Phytopathology. 110, 393-405. DOI: https://doi.org/10.1094/PHYTO-08-19-0297-R

Gordillo-Salinas, V. M., Flores-Magdaleno, H., Ortiz-Solorio, C. A., & Arteaga-Ramírez, R. (2021). Evaluation of nitrogen status in a wheat crop using unmanned aerial vehicle images. Chilean Journal of Agricultural Research, 81, 408-419. http://dx.doi.org/10.4067/S0718-58392021000300408 DOI: https://doi.org/10.4067/S0718-58392021000300408

Hnizil, O., Baidani, A., Khlila, I., Nsarellah, N., & Amamou, A. (2024). Assessing the impact of nitrogen fertilization, variety selection, year and their interaction on wheat yield and yield components. Nitrogen, 5, 266-287. DOI: https://doi.org/10.3390/nitrogen5020018

Kaya, Y. & Polat, N. (2023). A linear approach for wheat yield prediction by using different spectral vegetation indices. International Journal of Engineering and Geosciences, 8, 52-62. https://doi.org/10.26833/ijeg.1035037 DOI: https://doi.org/10.26833/ijeg.1035037

Large, E. C. (1954). Growth stages in cereals. Illustration of the Feekes scale. Plant Pathology, 3, 128-129. DOI: https://doi.org/10.1111/j.1365-3059.1954.tb00716.x

Louhaichi, M., Borman, M. M., & Johnson, D. E. (2001). Spatially located platform and aerial photography for documentation of grazing impacts on wheat. Geocarto International, 16, 65-70. https://doi.org/10.1080/10106040108542184 DOI: https://doi.org/10.1080/10106040108542184

Lussem, U., Bolten, A., Gnyp, M. L., Jasper, J., & Bareth, G. (2018). Evaluation of RGB-based vegetation indices from UAV imagery to estimate forage yield in Grassland. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 42, 1215-1219. https://doi.org/10.5194/isprs-archives-XLII-3-1215-2018 DOI: https://doi.org/10.5194/isprs-archives-XLII-3-1215-2018

Mandujano-Bueno, A., Paredes-Melesio, R., Buen-rostro-Rodríguez, J. F., de-la-O-Olán, M., Ortiz-Monasterio, I., Gámez-Vázquez, A. J., Inurreta-Aguirre, H. D. y Montero-Tavera, V. (2023). Algoritmo simplificado para aplicación racional de nitrógeno en trigos harineros en el Bajío mexicano. Revista Fitotecnia Mexicana, 46, 255-255. https://doi.org/10.35196/rfm.2023.3.255 DOI: https://doi.org/10.35196/rfm.2023.3.255

Montero, T. V., Ledesma, R. L., Rodríguez, V. A. P., Bravo, G. F. de J. y Solís, M. E. (2021). Evaluación de Índices de Vegetación de luz visible y su correlación con cobertura y rendimiento de trigo, en XI Reunión Nacional de Investigación Agrícola. Memoria. [En línea]. Disponible en: http://reunionescientificas2021.inifap.gob.mx/_media/CONVOCATORIAS/MEMORIA_AGR%C3%8DCOLA.pdf. Fecha de consulta: 21 de octubre de 2024.

Paredes-Melesio, R., Mandujano-Bueno, A., Buenrostro-Rodríguez, J. F., Jaralillo-López, G. y Alamilla, G. M. P. (2014). Estimación de la dosis óptima de fertilización nitrogenada mediante el uso del sensor portátil GreenSeeker™ en Guanajuato. En A. Mandujano, R. Paredes, P. Alamilla y J. F. Buenrostro (Eds.), Guía para la producción de maíz, frijol, trigo y sorgo en Guanajuato (pp. 92-101). Libro Técnico No. 4. Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias, Celaya, Guanajuato. México.

Raun, W. R., Solie, J. B., Stone, M. L., Martin, K. L., Freeman, K. W., Mullen, R. W., Zhang, H., Schepers, J. S., & Johnson, G. V. (2005). Optical sensor-based algorithm for crop nitrogen fertilization. Communications in Soil Science and Plant Analysis, 36, 2759-2781. https://doi. org/10.1080/00103620500303988 DOI: https://doi.org/10.1080/00103620500303988

Rouse, J. W., Haas, R. H., Schell, J. A., & Deering, D. W. (1973). Monitoring vegetation systems in the great plains with ERTS. Third ERTS Symposium. NASA Special Publications, 351(1), 309. https://doi.org/19740022614

Schneider, C. A., Rasband, W. S., & Eliceiri, K. W. (2012). NIH Image to ImageJ: 25 years of image analysis. Nature Methods, 9, 671-675. https://doi.org/10.1038/nmeth.2089 DOI: https://doi.org/10.1038/nmeth.2089

SIAP, Servicio de Información Agroalimentaria y Pesquera (2023). Panorama Agroalimentario 2023. Agricultura Ed. SIAP. Ciudad de México. 215 Pp.

SIAP, Servicio de Información Agroalimentaria y Pesquera (2024). Avance agrícola. [En línea]. Disponible en: https://www.gob.mx/siap/acciones-y-programas/produccion-agricola-33119. Fecha de consulta: 10 de febrero de 2024.

Singh, V. (2024). Advances in Precision Agriculture Technologies for Sustainable Crop Production. Journal of Scientific Research and Reports, 30, 1-71. DOI: https://doi.org/10.9734/jsrr/2024/v30i21844

Solís-Moya, E., Huerta-Espino, J., Pérez-Herrera, P., Villaseñor-Mir, H. E., Ramírez-Ramírez, A. y de-la-Cruz-González, M. de L. (2016). Alondra F2014, nueva variedad de trigo harinero para el Bajío, México. Revista Mexicana de Ciencias Agrícolas, 7, 1225-1229. DOI: https://doi.org/10.29312/remexca.v7i5.248

Solís-Moya, E., Ramírez-Ramírez, A., Ledesma-Ramírez, L. y de-la-Cruz-González, M. L. (2013). Guía para la producción de maíz, frijol, trigo y sorgo en Guanajuato. Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias. Libro Técnico, (4), 113-119.

Tamás, A., Kovács, E., Horváth, É., Juhász, C., Radócz, L., Rátonyi, T., & Ragán, P. (2023). Assessment of NDVI dynamics of maize (Zea mays L.) and its relation to grain yield in a polyfactorial experiment based on remote sensing. Agriculture, 13, 689. https://doi.org/10.3390/ agriculture13030689 DOI: https://doi.org/10.3390/agriculture13030689

Tucker, C. J. (1979). Red and photographic infrared linear combinations for monitoring vegetation. Remote Sensing of Environment, 8, 127-150. https://doi.org/10.1016/0034-4257(79)90013-0 DOI: https://doi.org/10.1016/0034-4257(79)90013-0

Van-Ittersum, M. K., Cassman, K. G., Grassini, P., Wolf, J., Tittonell, P., & Hochman, Z. (2013). Yield gap analysis with local to global relevance—A review. Field Crops Research, 143, 4-17. DOI: https://doi.org/10.1016/j.fcr.2012.09.009

Walsh, O. S., Nambi, E., Shafian, S., Jayawardena, D. M., Ansah, E. O., Lamichhane, R., & McClintick-Chess, J. R. (2023). UAV-based NDVI estimation of sugarbeet yield and quality under varied nitrogen and water rates. Agrosystems, Geosciences & Environment, 6(1), e20337. https://doi.org/10.1002/agg2.20337 DOI: https://doi.org/10.1002/agg2.20337

Walsh, O. S., Torrion, J. A., Liang, X., Shafian, S., Yang, R., Belmont, K. M., & McClintick-Chess, J. R. (2020). Grain yield, quality, and spectral characteristics of wheat grown under varied nitrogen and irrigation. Agrosystems, Geosciences & Environment, 3(1), e20104. https://doi.org/10.1002/agg2.20104 DOI: https://doi.org/10.1002/agg2.20104

Zadoks, J. C., Chang, T. T., & Konzak, C. F. (1974). A decimal code for the growth stages of cereals. Weed Research, 14, 415-421. DOI: https://doi.org/10.1111/j.1365-3180.1974.tb01084.x

Published

2024-11-15

How to Cite

Mandujano-Bueno, A., Buenrostro-Rodríguez, J. F., & Montero-Tavera, V. (2024). Association of RGB vegetation indices with yield and nitrogen dose in bread wheat. CienciaUAT, 19(2). https://doi.org/10.29059/cienciauat.v19i2.1925

Issue

Section

Biotechnology and Agricultural Sciences

Similar Articles

1 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.