Perfil de compuestos orgánicos volátiles y ácidos grasos del aguacate (Persea americana) y sus beneficios a la salud

Autores/as

  • Cynthia Teresa Lara-García Tecnológico Nacional de México Celaya, Departamento de Ingeniería Bioquímica, Antonio García Cubas Pte. núm. 600, esq. Avenida Tecnológico, col. Alfredo V. Bonfil, Celaya, Guanajuato, México, C. P. 38010.
  • Hugo Jiménez-Islas Tecnológico Nacional de México Celaya, Departamento de Ingeniería Bioquímica, Antonio García Cubas Pte. núm. 600, esq. Avenida Tecnológico, col. Alfredo V. Bonfil, Celaya, Guanajuato, México, C. P. 38010. https://orcid.org/0000-0002-1084-5520
  • Rita Miranda-López Tecnológico Nacional de México Celaya, Departamento de Ingeniería Bioquímica, Antonio García Cubas Pte. núm. 600, esq. Avenida Tecnológico, col. Alfredo V. Bonfil, Celaya, Guanajuato, México, C. P. 38010. https://orcid.org/0000-0002-5985-6976

DOI:

https://doi.org/10.29059/cienciauat.v16i1.1483

Palabras clave:

Persea americana, compuestos volátiles, ácidos grasos, bioactividad

Resumen

La caracterización y evaluación de recursos fitogenéticos a partir de su contenido de ácidos grasos y compuestos orgánicos volátiles (COV) permiten determinar su utilidad potencial. Se han realizado pocos estudios recientes relacionados con los COV encontrados en el aguacate, los cuales pueden variar dependiendo del lugar de origen, genética y fenotipos. El objetivo del presente trabajo fue presentar el estado del arte de la fitoquímica del aguacate criollo comparado con variedades comerciales. Se encontró que los COV le confieren un perfil de aroma que identifica a diversas variedades y que los ácidos grasos son responsables de la síntesis de algunos COV. En la hoja de aguacate criollo se identificaron 26 COV, siendo 8 monoterpenoides, 7 sesquiterpenos, 6 fenilprondes, 1 acetato y 4 alcanos; estos COV no se han encontrado en las variedades comerciales. Por otro lado, la variedad Drymifolia se caracteriza por su contenido fenólico, diversos ácidos grasos y acetogeninas. Dichos componentes químicos también se han asociado con diversos beneficios a la salud, como actividad anticancerígena en colon, próstata y células K562, actividad antiinflamatoria y antioxidante. Ello ha propiciado el interés de fomentar su uso como ingrediente, aditivo o fitofármaco en la industria alimentaria o biotecnológica.

Biografía del autor/a

Hugo Jiménez-Islas, Tecnológico Nacional de México Celaya, Departamento de Ingeniería Bioquímica, Antonio García Cubas Pte. núm. 600, esq. Avenida Tecnológico, col. Alfredo V. Bonfil, Celaya, Guanajuato, México, C. P. 38010.

SNI 2

Rita Miranda-López, Tecnológico Nacional de México Celaya, Departamento de Ingeniería Bioquímica, Antonio García Cubas Pte. núm. 600, esq. Avenida Tecnológico, col. Alfredo V. Bonfil, Celaya, Guanajuato, México, C. P. 38010.

SNI I

Citas

Acosta, E., Almeyda, I. H. y Hernández, I. (2013). Evaluación de aguacates criollos en Nuevo León, México: región norte. Revista Mexicana de Ciencias Agrícolas. 4(4): 531-542.

Acosta, E., Hernández, I. y Almeyda, I. H. (2012). Evaluación de aguacates criollos en Nuevo León, México: región sur. Revista Mexicana de Ciencias Agrícolas. 3(2): 245-257.

Adeyemi, O., Pkpo, S., and Ogunti, O. (2002). Analgesic and anti-inflammatory effects of Persea americana Mill (Lauraceae). Fisioterapia. 52: 2311-2323.

Ali, S., Plotto, A., Scully, B. T., Wood, D., Stover, E., Owens, N., …, and Bai, J. (2020). Fatty acid and volatile organic compound profiling of avocado germplasm grown under East-Central Florida conditions. Scientia Horticulturae. 261: 109080.

Alkhalaf, M. I., Alansari, W. S., Ahmed, E. A., and Elhalwagy, M. E. A. (2019). Anti-oxidant, antiinflammatory and anti-cancer activities of avocado (Persea americana) fruit and seed extract. Journal of King Saud University – Science. 31(4): 1358-1362.

Araújo, R. G., Rodríguez-Jasso, R. M., Ruiz, H. A., Govea-Salas, M., Pintado, M. E., and Aguilar, C. N. (2020). Process optimization of microwave-assisted extraction of bioactive molecules from avocado seeds. Industrial Crops & Products. 154: 112623.

Araújo, R. G., Rodríguez-Jasso, R. M., Ruiz, H. A., Pintado, M. M. E., and Aguilar, C. N. (2018). Avocado by-products: Nutritional and functional properties. Trends in Food Science and Technology. 80: 51-60.

Bhattacharyya, S. S., Paul, S., Dutta, S., Boujedaini, N., and Khuda-Bukhsh, A. R. (2010). Anti-oncogenic potentials of a plant coumarin (7-hydroxy-6-methoxy coumarin) against 7,12-dimethylbenz [a] anthracene-induced skin papilloma in mice: The possible role of several key signal proteins. Chinese Journal Integrative Medicine. 8(7): 645-654.

Bhuyan, D. J., Alsherbiny, M. A., Perera, S., Low, M., Basu, A., Devi, O. A., …, and Papoutsis, K. (2019). The Odyssey of Bioactive Compounds in Avocado (Persea americana) and Their Health Benefits. Antioxidants. 8(10): 426.

Campos, D., Teran-Hilares, F., Chirinos, R., Aguilar-Galvez, A., García-Ríos, D., Pacheco-Avalos, A., and Padreschi, R. (2020). Bioactive compounds and antioxidant activity from harvest to edible ripeness of avocado cv. Hass (Persea americana) throughout the harvest seasons. International Journal of Food Science and Technology. 55(5): 2208-2218.

Campuzano-Granados, A. J. and Cruz-López, L. (2021). Comparative analysis of floral volatiles between the ‘Hass’ variety and Antillean race avocado. Revista Chapingo Serie Horticultura. 27(1): 19-26.

Canto, E. M., Tieman, D. M., Sargent, S. A., Klee, H. J., and Huber, D. J. (2013). Volatile profiles of ripening West Indian and Guatemalan-West Indian avocado cultivars as affected by aqueous 1-methylcyclopropene. Postharvest Biology and Technology. 80: 37-46.

Carvalho, C. P., Bernal, J., Velázquez, M. A., and Cartagena J. R. (2015). Fatty acid content of avocados (Persea americana Mill. cv. Hass) in relation to orchard altitude and fruit maturity stage. Agronomía Colombiana. 33(2):220-227.

Cascinu, S., Catalano, V., Cordella, L., Labianca, R., Giordani, P., Baldelli, A. M., …, and Catalano, G. (2002). Neuroprotective effect of reduced glutathione on oxaliplatin-based chemotherapy in advanced colorectal cancer: A randomized, double-blind, placebo-controlled trial. Journal Clinical Oncology. 20(16): 3478-3483.

Castro-López, C., Bautista-Hernández, I., González-Hernández, M. D., Martínez-Ávila, G. C. G., Rojas, R., Gutiérrez-Díez, A., …, and Aguirre-Arzola, V. E. (2019). Polyphenolic profile and antioxidant activity of leaf purified hydroalcoholic extracts from seven Mexican Persea americana cultivars. Molecules. 24(1): 173.

Cho, K., Goldstein, B., Gounaridis, D., and Newell, J. P. (2021). Where does your guacamole come from? Detecting deforestation associated with the export of avocados from Mexico to the United States. Journal of Environmental Management. 278: 111482.

Craig, W. J. (1997). Phytochemicals: guardians of our health. Issues in Vegetarian Dietetics. 5(3): 1-8.

D’ Ambrosio, S. M., Han, C., Pan, L., Kinghom, A. D., and Ding, H., (2011). Aliphatic acetogenin constituents of avocado fruits inhibit human oral cancer cell proliferation by targeting the EGFR/RAS/RAF/MEK/ERK1/2 pathway. Biochemical Biophysical Research Communications. 409(3): 465-469.

Damián-Nava, A., Palemón-Alberto, F., Moreno-Juárez, J., Hernández-Castro, E., Damián-Díaz, P. E., Vargas-Álvarez, D., …, and Reyes-García, G. (2017). Characterization of creole avocado fruits harvested from both central and northern regions of Guerrero, Mexico. International Journal of Advanced Research in Biological Sciences. 4(10): 151-159.

Dávila-Aviña, J. E. J., González-Aguilar, G. A., Ayala-Zavala, J. F., Sepúlveda, D. R. y Olivas, G. I. (2011). Compuestos volátiles responsables del sabor del tomate. Revista Fitotecnia Mexicana. 34(2): 133-143.

Ding, H., Han, C., Guo, D., Chin, Y. W., Ding, Y., Kinghorn, A. D., and D’ Ambrosio, S. M. (2009). Selective induction of apoptosis of human oral cancer cell lines by avocado extracts via a ros-mediated mechanism. Nutrition and Cancer. 61(3): 348-356.

Dreher, M. L. and Davenport, A. J. (2013). Hass avocado composition and potential health effects. Critical Reviews in Food Science and Nutrition. 53(7): 738-750.

Edwards, C. G., Walk, A. M., Thompson, S. V., Reeser, G. E., Burd, N. A., Holscher, H. D., and Khan, N. A. (2020). Effects of 12-week avocado consumption on cognitive function among adults with overweight and obesity. International Journal of Psychophysiology. 148: 13-24.

Espinosa-Alonso, L. G., Paredes-López, O., Valdez-Morales, M., and Oomah, B. D. (2017). Avocado oil characteristics of Mexican creole genotypes. European Journal of Lipid Science and Technology. 119(10): 1600406.

Figueroa, J. G., Borrás-Linares, I., Lozano-Sánchez, J., and Segura-Carretero A. (2018). Comprehensive identification of bioactive compounds of avocado peel by liquid chromatography coupled to ultra-high-definition accurate-mass Q- TOF. Food Chemistry. 245: 707-716.

Flores-Álvarez, L. J., Guzmán-Rodríguez, J. J., López-Gómez, R., Salgado-Garciglia, R., Ochoa-Zarzosa, A., and López-Meza, J. E. (2018). PaDef defensin from avocado (Persea americana var. Drymifolia) is cytotoxic to K562 chronic myeloid leukemia cells through extrinsic apoptosis. International Journal of Biochemistry and Cell Biology. 99: 10-18.

García-Rojas, M., Morgan, A., Gudenschwager, O., Zamudio, S., Campos-Vargas, R., González-Agüero, M., and Defilippi, B. G. (2016). Biosynthesis of fatty acids-derived volatiles in Hass avocado is modulated by ethylene and storage conditions during ripening. Scientia Horticulturae. 202: 91-98.

Guo, J., Yue, T., Yuan, Y., Sun, N., and Liu, P. (2020). Characterization of volatile and sensory profiles of apple juices to trace fruit origins and investigation of the relationship between the aroma properties and volatile constituents. LWT - Food Science and Technology. 124: 109203.

Jimenez, P., Garcia, P., Quitral, V., Vasquez, K., Parra-Ruiz, C., Reyes-Farias, M., ..., and Soto-Covasich, J. (2020). Pulp, Leaf, Peel and Seed of Avocado Fruit: A review of bioactive compounds and healthy benefits. Food Reviews International. 1-37.

Jiménez-Velázquez, P., Valle-Guadarrama, S., Alía-Tejacal, I., Salinas-Moreno, Y., García-Cruz, L., Pérez-López, A., and Guerra-Ramírez, D. (2020). Separation of bioactive compounds from epicarp of ‘Hass’ avocado fruit through aqueous two-phase systems. Food and Bioproducts Processing. 123: 238-250.

Kim, O. K., Murakami, A., Nakamura, Y., Takeda, N., Yoshizumi, H., and Ohigashi, H. (2000). Novel nitric oxide and superoxide generation inhibitors, persenone A and B, from avocado fruit. Journal of Agriculture and Food Chemical. 48: 1557-1653.

Krumreich, F. D., Borges, C. D., Mendonça, C. R. B., Jansen-Alves, C., and Zambiazi, R. C. (2018). Bioactive compounds and quality parameters of avocado oil obtained by different processes. Food Chemistry. 257: 376-381.

Kulkarni, P., Paul, R., and Ganesh, N. (2010). Evaluation of Genotoxicity of Avocado (Persea Americana) Fruit and Leaf Extracts in Human Peripheral Lymphocytes. Journal of Environmental Science and Health, Part C. 28(3): 172-187.

Lara-Márquez, M., Báez-Magaña, M., Raymundo-Ramos, C., Spagnuolo, P. A., Macías-Rodríguez, L., Salgado-Garciglia, R., …, and López-Meza, J. E. (2019). Lipid-rich extract from Mexican avocado (Persea americana var. Drymifolia) induces apoptosis and modulates the inflammatory response in Caco-2 human colon cancer cells. Journal of Functional Foods. 64: 103658.

Lu, Q. Y., Arteaga, J. R., Zhang, Q., Huerta, S., Go, V. L. W., and Heber, D. (2005). Inhibition of prostate cancer cell growth by an avocado extract: role of lipid-soluble bioactive substances. Journal of Nutritional Biochemistry. 16: 23-30.

Mahendran, T., Brennan, J. G., and Hariharan, G. (2018). Aroma volatiles components of ‘Fuerte’ Avocado (Persea americana Mill.) stored under different modified atmospheric conditions. Journal of Essential Oil Research. 31(21): 1-9.

Melgar, B., Días, I. M., Ciric, A., Sokovic, M., García-Castello, E. M., Rodríguez-López, A. D., …, and Ferreira, I. C. R. F. (2018). Bioactive characterization of Persea americana Mill. by-products: A rich source of inherent antioxidants. Industrial Crops & Products. 111: 212-218.

Mpai, S. and Sivakumar, D. (2020). Influence of growing seasons on metabolic composition, and fruit quality of avocado cultivars at ‘ready-to-eat stage’. Scientia Horticulturae. 265: 109-159.

Naveed, M., Hejazi, V., Abbas, M., Kamboh, A. A., Khan, G. J., Shumzaid, M., …, XiaoHui, Z. (2018). Chlorogenic acid (CGA): A pharmacological review and call for further research. Biomed Pharmacother. 97: 67-74.

Oelrichs, P. B., Ng, J. C., Seawright, A. A., Ward, A., Schäffeler, L., and MacLeod, J. K. (1995). Isolation and identification of a compound from avocado (Persea Americana) Leaves wich causes necrosis of the acinar epithelium of the lactating mammary gland and myocardium. Natural Toxins. 3(5): 344-349.

Ortega-Arellano, H. F., Jimenez-Del-Rio, M., and Velez-Pardo, C. (2019). Neuroprotective effects of methanolic extract of avocado Persea americana (var. Colinred) peel on paraquat-induced locomotor impairment, lipid peroxidation and shortage of life span in transgenic knockdown parkin drosophila melanogaster. Neurochemical Research. 44(8): 1986-1998.

Ozolua, R. I., Anaka, O. N., Okpo, S. O., and Idogun, S.E. (2009). Acute and Sub-Acute toxicological assessment of the aqueous seed extract of Persea Americana Mill (Lauraceae) in Rats. African Journal of Traditional, Complementary and Alternative Medicines. 6(4): 573-578.

Pedreschi, R., Hollak, S., Harkema, H., Otma, E., Robledo, P., Westra, E., …, and Defilippi, B. G. (2016). Impact of postharvest ripening strategies on ‘Hass’ avocado fatty acid profiles. South African Journal of Botany. 103: 32-35.

Poll, L., Nielsen, G. S., Varming, C., and Petersen, M. A. (2006). Aroma changes from raw to processed products in fruits and vegetables. Developments in Food Science. 43: 239-244.

Richard, D., Kefi, K., Barbe, U., Bausero, P., and Visioli, F. (2008). Polyunsaturated fatty acids as antioxidants. Pharmacological Research. 57: 451-455.

Rodríguez-Sánchez, D., Silva-Platas, C., Rojo, R. P., García, N., Cisneros-Zevallos, L., García-Rivas, G., and Hernández-Brenes, C. (2013). Activity-guided identification of acetogenins as novel lipophilic antioxidants present in avocado pulp (Persea americana). Journal of Chromatography B. 942: 37-45.

Salazar-García, S., Medina-Carrillo, R. E. y Álvarez-Bravo, A. (2016). Evaluación inicial de algunos aspectos de calidad del fruto de aguacate ‘Hass’ producido en tres regiones de México. Revista Mexicana de Ciencias Agrícolas. 7(2): 277-289.

Santana, I., Castelo-Branco, V. N., Guimarães, B. M., de-Oliveira-Silva, L., Peixoto, V. O. D. S., Cabral, L. M. C., ..., and Torres, A. G. (2019). Hass avocado (Persea americana Mill.) oil enriched in phenolic compounds and tocopherols by expeller-pressing the unpeeled microwave dried fruit. Food Chemistry. 286: 354-361.

Tiwari, S., Kate, A., Mohapatra, D., Tripathi, M. K., Ray, H., Akuli, A., …, and Modhera, B. (2020). Biomarkers for quality management of horticultural commodities during storage through e-sensing. Trends in Food Science y Technology. 106: 417-433.

Torres-Gurrola, G., Montes-Hernández, S., and Espinosa-García, F. J. (2009). Patterns of variation and geographic distribution in foliar chemical phenotypes of Persea americana var. Drymifolia. Revista Fitotecnia Mexicana. 32(1): 19-30.

Turner, B. L. and Miksicek, C. H. (1984). Economic plant-species associated with prehistoric agriculture in the Maya lowlands. Economic Botany. 38(2): 179-193.

Villa-Rodríguez, J. A., Molina-Corral, F. J., Ayala-Zavala, J. F., Olivas, G. I., and González-Aguilar G. A. (2011). Effect of maturity stage on the content of fatty acids and antioxidant activity of ‘Hass’ avocado. Food Research International. 44(5): 1231-1237.

Younis, I., Hifnawy, M. S., El-Hawary, S. S., El Bishbishy, M. H., and Elateek, S. Y. (2020). Bioactive metabolites of hass and reed avocados targeting methicillin-resistant Staphylococcus aureus enterotoxin like X via molecular modeling and cytotoxicity assessments. Natural Product Research. 1-5.

Publicado

2021-07-30

Cómo citar

Lara-García, C. T., Jiménez-Islas, H., & Miranda-López, R. (2021). Perfil de compuestos orgánicos volátiles y ácidos grasos del aguacate (Persea americana) y sus beneficios a la salud. CienciaUAT, 16(1), 162–177. https://doi.org/10.29059/cienciauat.v16i1.1483

Número

Sección

Biotecnología y Ciencias Agropecuarias

Artículos similares

1 2 3 4 5 6 7 8 > >> 

También puede Iniciar una búsqueda de similitud avanzada para este artículo.