Organogeles como mejoradores del perfil lipídico en matrices cárnicas y lácteas

Autores/as

  • Mayela García-Andrade Tecnológico Nacional de México-Instituto Tecnológico de Durango, Unidad de Posgrado, Investigación y Desarrollo Tecnológico (UPIDET), Dpto. de Ingenierías Química y Bioquímica, Blvd. Felipe Pescador núm. 1830 Ote., col. Nueva Vizcaya, Durango, Durango, México, C. P. 34080.
  • José Alberto Gallegos-Infante Tecnológico Nacional de México-Instituto Tecnológico de Durango, Unidad de Posgrado, Investigación y Desarrollo Tecnológico (UPIDET), Dpto. de Ingenierías Química y Bioquímica, Blvd. Felipe Pescador núm. 1830 Ote., col. Nueva Vizcaya, Durango, Durango, México, C. P. 34080.
  • Rubén Francisco González-Laredo Tecnológico Nacional de México-Instituto Tecnológico de Durango, Unidad de Posgrado, Investigación y Desarrollo Tecnológico (UPIDET), Dpto. de Ingenierías Química y Bioquímica, Blvd. Felipe Pescador núm. 1830 Ote., col. Nueva Vizcaya, Durango, Durango, México, C. P. 34080.

DOI:

https://doi.org/10.29059/cienciauat.v14i1.1129

Palabras clave:

organogel, sustitución, grasa saturada, alimentos

Resumen

La estructuración de aceites comestibles, a través de la organogelación, tiene un potencial prometedor en aplicaciones alimenticias, al ser utilizadas como sustitutos de grasa saturada en algunos productos cárnicos y lácteos de alta demanda de consumo, con la finalidad de mejorar su perfil lipídico, el cual está relacionado con la mejora nutricional que demanda el consumidor actual, por el efecto negativo que tienen las grasas saturadas en la salud. El objetivo de este trabajo fue analizar diferentes formulaciones de organogeles, aplicados en matrices cárnicas-lácteas, y su impacto en las propiedades finales de tales productos alimentarios, implementados como sustituto de grasa saturada. Se encontró que la sustitución de grasa saturada, por este tipo de materiales, afecta principalmente las propiedades fisicoquímicas, modifica el sabor original de los alimentos y mejora su perfil lipídico; sin embargo, aún no permiten cumplir las expectativas del consumidor final, por las cualidades únicas que ofrece la grasa sólida, lo que representa la principal barrera a superar para su uso en una producción a escala industrial y venta al mercado. Es necesario desarrollar nuevas formulaciones, que asemejen dichas cualidades, para alcanzar la aceptación de los consumidores.

Biografía del autor/a

Mayela García-Andrade, Tecnológico Nacional de México-Instituto Tecnológico de Durango, Unidad de Posgrado, Investigación y Desarrollo Tecnológico (UPIDET), Dpto. de Ingenierías Química y Bioquímica, Blvd. Felipe Pescador núm. 1830 Ote., col. Nueva Vizcaya, Durango, Durango, México, C. P. 34080.

Estudiante de Doctorado 

Doctorado en Ciencias en Ingeniería Bioquímica 

Unidad de Posgrado, Investigación y Desarrollo Tecnológico UPIDET

Instituto Tecnológico de Durango 

Citas

Alejandre, M., Poyato, C., Ansorena, D., and Astiasarán, I. (2016). Linseed oil gelled emulsion: A successful fat replacer in dry fermented sausages. Meat Science. 121: 107-113.

ANSES, Agencia Nacional de Seguridad Sanitaria (2008). Agence Nationale de Sécurité Sanitaire. [En línea]. Disponible en: http://www.anses.fr/TableCIQUAL/index.htm. Fecha de consulta: 16 de febrero de 2012.

Banupriya, S., Elango, A., Karthikeyan, N., and Kathirvelan, C. (2016). Physico chemical characteristics of dietetic ice cream developed by with sunflower oil rice bran wax organogel. Indian Journal of Science and Technology. 9(32): 32-35.

Barbut, S., Wood, J., and Marangoni, A. (2016a). Potential use of organogels to replace animal fat in comminuted meat products. Meat Science. 122: 155-162.

Barbut, S., Wood, J., and Marangoni, A. (2016b). Quality effects of using organogels in breakfast sausage. Meat Science. 122: 84-89.

Barbut, S., Wood, J., and Marangoni, A. (2016c). Effects of organogel hardness and formulation on acceptance of Frankfurters. Journal of Food Science. 81(9): 2183-2188.

Bemer, H., Limbaugh, M., Cramer, E., Harper, W., and Maleky, F. (2016). Vegetable organogels incorporation in cream cheese products. Food Research International. 85: 67-75.

Bier, D. (2015). Saturated fats and cardiovascular disease: Interpretations not as simple as they once were. Critical Reviews in Food Science and Nutrition. 56(12): 1943-1946.

Bloukas, J., Paneras, E., and Fournitzis, G. (1997). Effect of replacing pork backfat with olive oil on processing and quality characteristics of fermented sausages. Meat Science. 45(2): 133-144.

Bot, A., Den-Adel, R., and Roijers, E. (2008). Fibrils of γ-oryzanol + β-sitosterol in edible oil organogels. Journal of the American Oil Chemists’ Society. 85(12): 1127-1134.

Bot, A., Veldhuizen, Y., den-Adel, R., and Roijers, E. (2009). Non-TAG structuring of edible oils and emulsions. Food Hydrocolloids. 23(4): 1184-1189.

Botega, D., Marangoni, A., Smith, A., and Goff, H. (2013). Development of formulations and processes to incorporate waxoleogels in ice cream. Journal of Food Science. 78(12): 1845-1851.

Ceballos, M., Brailovsky, V., Bierbrauer, K., Cuffini, S., Beltramo, D., and Bianco, I. (2014). Effect of ethylcellulose on the structure and stability of non-aqueous oil based propylene glycol emulsions. Food Research International. 62: 416-423.

Chaves, K., Barrera-Arellano, D., and Ribeiro, A. (2018). Potential application of lipid organogels for food industry. Food Research International. 105: 863-872.

Co, E. and Marangoni, A. (2012). Organogels : an alternative edible oil-structuring method. Journal of American Oil Chemical Society. 89(5): 749-780.

COMECARNE, Consejo Mexicano de la Carne (2018). Consejo Mexicano de la Carne. [En línea]. Disponible en: https://comecarne.org/datos-de-la-industria/. Fecha de consulta: 3 de enero de 2019.

Davidovich-Pinhas, M., Barbut, S., and Marangoni, A. (2016). Development, characterization, and utilization of food-grade polymer oleogels. Annual Review of Food Science and Technology. 7(1): 65-91.

Eerd, J. (1971). Meat emulsion stability. Influence of hydrophilic lipophilic balance, salt concentration and blending with surfactants. Journal of Food Science. 36(7): 1121-1124.

Flores, M., Giner, E., Fiszman, S. M., Salvador, A., and Flores, J. (2007). Effect of a new emulsifier containing sodium stearoyl-2-lactylate and carrageenan on the functionality of meat emulsion systems. Meat Science. 76(1): 9-18.

Gandolfo, F. G., Bot, A., and Flöter, E. (2004). Structuring of edible oils by long-chain FA, fatty alcohols, and their mixtures. Journal of the American Oil Chemists’ Society. 81(1): 1-6.

Garti, N. and Marangoni, A. (2011). Edible Oleogels: An overview of the past, present, and future of organogels. Urbana IL: AOCS Press. 1-17 Pp.

Gordon, A. and Barbut, S. (1992). Mechanisms of meat batter stabilization : A review. Critical Reviews in Food Science and Nutrition. 32(4): 299-332.

Grasso, S., Brunton, N. P., Lyng, J. G., Lalor, F., and Monahan, F. J. (2014). Healthy processed meat products e regulatory, reformulation and consumer challenges. Trends in Food Science & Technology. 39(1): 4-17.

Gravelle, A., Barbut, S., Quinton, M., and Marangoni, A. (2014). Towards the development of a predictive model of the formulation-dependent mechanical behaviour of edible oil-based ethylcellulose oleogels. Journal of Food Engineering. 143: 114-122.

Hughes, N., Marangoni, A., Wright, A., Rogers, M., and Rush, J. (2009). Potential food applications of edible oil organogels. Trends in Food Science & Technology. 20(10): 470-480.

Hwang, H., Singh, M., Bakota, E. L., Winkler-Moser, J., Kim, S., and Liu, S. (2013). Margarine from organogels of plant wax and soybean oil. Journal of the American Oil Chemists’ Society. 90(11): 1705-1712.

Jiménez-Colmenero, F. (2007). Healthier lipid formulation approaches in meat-based functional foods. Technological options for replacement of meat fats by non-meat fats. Trends in Food Science and Technology. 18(11): 567-578.

Kouzounis, D., Lazaridou, A., and Katsanidis, E. (2017). Partial replacement of animal fat by oleogels structured with monoglycerides and phytosterols in frankfurter sausages. Meat Science. 130: 38-46.

Lupi, F., Gabriele, D., Facciolo, D., Baldino, N., Seta, L., and de-Cindio, B. (2012). Effect of organogelator and fat source on rheological properties of olive oil-based organogels. Food Research International. 46(1): 177-184.

Lupi, F., Gabriele, D., Seta, L., Baldino, N., and de-Cindio, B. (2014). Rheological design of stabilized meat sauces for industrial uses. European Journal of Lipid Science and Technology. 116(12): 1734-1744.

Moriano, M. and Alamprese, C. (2017). Organogels as novel ingredients for low saturated fat ice creams. LWT - Food Science and Technology. 86: 371-376.

Moschakis, T., Dergiade, I., Lazaridou, A., Biliaderis, C., and Katsanidis, E. (2017). Modulating the physical state and functionality of phytosterols by emulsification and organogel formation: Application in a model yogurt system. Journal of Functional Foods. 33: 386-395.

Moschakis, T., Panagiotopoulou, E., and Katsanidis, E. (2016). Sunflower oil organogels and organogel-in-water emulsions (part I): Microstructure and mechanical properties. LWT - Food Science and Technology. 73: 153-161.

Muguerza, E. and Gimeno, O. (2004). New formulations for healthier dry fermented sausages : a review. Trends in Food Science & Technology. 15(9): 452-457.

Murdan, S., Gregoriadis, G., and Florence, A. (1999). Novel sorbitan monostearate organogels. Journal of Pharmaceutical Sciences. 88(6): 608-614.

Nettleton, J., Brouwer, I., Geleijnse, J., and Hornstra, G. (2017). Saturated fat consumption and risk of coronary heart disease and ischemic stroke: A Science Update. Annals of Nutrition and Metabolism. 70(1): 26-33.

NHDSC, National Hot Dog and Sausage Council (2016). National Hot Dog and Sausage Council. Estadísticas de consumo. [En línea]. Disponible en: http://www.hot-dog.org/media/consumption-stats. Fecha de consulta: 30 de enero de 2018.

Okesola, B., Vieira, V., Cornwell, D., Whitelaw, N., and Smith, D. (2015). 1,3:2,4-Dibenzylidene- D-sorbitol (DBS) and its derivatives – efficient, versatile and industrially-relevant low-molecular-weight gelators with over 100 years of history and a bright future. Soft Matter. 11(24): 4768-4787.

Öğütcü, M. and Yilmaz, E. (2015). Comparison of the pomegranate seed oil organogels of carnauba wax and monoglyceride. Journal of Applied Polymer Science. 132(4): 10-13.

Panagiotopoulou, E., Moschakis, T., and Katsanidis, E. (2016). Sunflower oil organogels and organogel-in-water emulsions (part II): Implementation in frankfurter sausages. LWT - Food Science and Technology. 73(part II): 351-356.

Park, J., Rhee, K., Keeton, J., and Rhee, K. (1989). Properties of low-fat Frankfurters containing monounsaturated and omega-3 polyunsaturated oils. Journal of Food Science. 54(3): 500-504.

Patel, A. and Dewettinck, K. (2015). Comparative evaluation of structured oil systems: Shellac oleogel, HPMC oleogel, and HIPE gel. European Journal of Lipid Science and Technology. 117(11): 1772-1781.

Patel, A. and Dewettinck, K. (2016). Edible oil structuring: an overview and recent updates. RSC Food Function. 7(1): 20-29.

Patel, A., Schatteman, D., Lesaffer, A., and Dewettinck, K. (2013). A foam-templated approach for fabricating organogels using a water-soluble polymer. RSC Advances. 3(45): 22900-22903.

Pehlivanoglu, H., Demirci, M., and Toker, O. (2018). Rheological properties of wax oleogels rich in high oleic acid. International Journal of Food Properties. 20(3): 2856-2867.

Pernetti, M., van Malssen, K., Flöter, E., and Bot, A. (2007a). Structuring of edible oils by alternatives to crystalline fat. Current Opinion in Colloid and Interface Science. 12(4-5): 221-231.

Pernetti, M., van-Malssen, K., Kalnin, D., and Flöter, E. (2007b). Structuring edible oil with lecithin and sorbitan tri-stearate. Food Hydrocolloids. 21(5-6): 855-861.

Ramos, G., Farias, E., Almada, C., and Crivaro, N. (2004). Estabilidad de salchichas con hidrocoloides y emulsificantes. Información Tecnológica. 15(4): 91-94.

Rogers, M. A. (2009). Novel structuring strategies for unsaturated fats – Meeting the zero-trans, zero-saturated fat challenge : A review. Food Research International. 42(7): 747-753.

Rogers, M., Strober, T., Bot, A., Toro-vazquez, J., Stortz, T. and Marangoni, A. (2014). Edible oleogels in molecular gastronomy. International Journal of Gastronomy and Food Science. 20(1): 22-31.

Sánchez, R., Franco, J., Delgado, M., Valencia, C., and Gallegos, C. (2011). Rheology of oleogels based on sorbitan and glyceryl monostearates and vegetable oils for lubricating applications. Grasas y Aceites. 62(3): 328-336.

Sawalha, H., Venema, P., Bot, A., Flöter, E., and van der Linden, E. (2011). The influence of concentration and temperature on the formation of γ-oryzanol + β-sitosterol tubules in edible oil organogels. Food Biophysics. 6(1): 20-25.

Schaink, H. and Van-Malssen, K. (2007). Shear modulus of sintered ‘house of cards’-like assemblies of crystals. Langmuir. 23(25): 12682-12686.

Si, H., Cheong, L., Huang, J., Wang, X., and Zhang, H. (2016). Physical properties of soybean oleogels and oil migrationevaluation in model praline system. Journal of the American Oil Chemists’ Society. 93(8): 1075-1084.

Siraj, N., Shabbir, M., Ahmad, T., Sajjad, A., Khan, M., Khan, M., and Butt, M. (2015). Organogelators as a saturated fat replacer for structuring edible oils. International Journal of Food Properties. 18(9): 1973-1989.

Stortz, T., Zetzl, A., Barbut, S., Cattaruzza, A., and Marangoni, A. (2012). Edible oleogels in food products to help maximize health benefits and improve nutritional profiles. Lipid Technology. 24(7): 151-154.

Terech, P. and Weiss, R. (1997). Low molecular mass gelators of organic liquids and the properties of their gels. Chemical Reviews. 97(8): 3133-3160.

Triki, M., Herrero, A., Jiménez-Colmenero, F., and Ruiz-Capillas, C. (2013). Effect of preformed konjac gels, with and without olive oil, on the technological attributes and storage stability of merguez sausage. Meat Science. 93(3): 351-360.

Utrilla, M., García-Ruiz, A., and Soriano, A. (2014). Effect of partial replacement of pork meat with an olive oil or-

ganogel on the physicochemical and sensory quality of dryripened venison sausages. Meat Science. 97(4): 575-582.

Vintiloiu, A. and Leroux, J. (2008). Organogels and their use in drug delivery — A review. Journal of Controlled Release. 125(3): 179-192.

Wang, F., Gravelle, A., Blake, A., and Marangoni, A. (2016). Novel trans fat replacement strategies. Current Opinion in Food Science. 7: 27-34.

Wright, A. and Marangoni, A. (2007). Time, temperature, and concentration dependence of ricin elaidic acid canola oil organogelation. Journal of the American Oil Chemists’ Society. 84(1): 3-9.

Yılmaz, E. and Öğütcü, M. (2014). Properties and stability of hazelnut oil organogels with beeswax and monoglyceride. Journal of the American Oil Chemists Society. 21(6): 1007-1017.

Youssef, M. and Barbut, S. (2009). Effects of protein level and fat/oil on emulsion stability, texture, microstructure and color of meat batters. Meat Science. 82(2): 228-233.

Youssef, M. and Barbut, S. (2011). Fat reduction in comminuted meat products-effects of beef fat, regular and preemulsified canola oil. Meat Science. 87(4): 356-360.

Yu, G., Yan, X., Han, C., and Huang, F. (2013).

Characterization of supramolecular gels. Chemical Society Reviews. 42(16): 6697-6722.

Zetzl, A., Marangoni, A., and Barbut, S. (2012). Mechanical properties of ethylcellulose oleogels and their potential for saturated fat reduction in frankfurters †. Food & Function. 3(3): 327-337.

Publicado

2019-07-29

Cómo citar

García-Andrade, M., Gallegos-Infante, J. A., & González-Laredo, R. F. (2019). Organogeles como mejoradores del perfil lipídico en matrices cárnicas y lácteas. CienciaUAT, 14(1), 121-132. https://doi.org/10.29059/cienciauat.v14i1.1129

Número

Sección

Biotecnología y Ciencias Agropecuarias

Artículos similares

También puede {advancedSearchLink} para este artículo.