Captadores solares de placa plana para el secado solar indirecto de alimentos: características y aplicaciones

Autores/as

  • Eduardo Figueroa-Garcia Tecnológico Nacional de México, Instituto Tecnológico de Tlajomulco, Tlajomulco de Zúñiga, Jalisco, México. / Tecnológico Nacional de México, Instituto Tecnológico José Mario Molina Pasquel y Henríquez, Campus Cocula, calle Tecnológico núm. 1000, colonia Lomas de Cocula, Cocula, Jalisco, México, C. P. 48500.
  • Arturo Moisés Chávez-Rodríguez Tecnológico Nacional de México, Instituto Tecnológico de Tlajomulco, Tlajomulco de Zúñiga, Jalisco, México.

DOI:

https://doi.org/10.29059/cienciauat.v17i1.1571

Palabras clave:

energía solar, secado solar, captador solar de placa plana, captador solar de placa plana híbrido

Resumen

La industria alimentaria utiliza hasta el 15 % del total de la energía eléctrica que demanda el sector industrial, principalmente en procesos de secado. Esto suscita la búsqueda de nuevas alternativas de secado que reduzcan el uso de energía eléctrica. Una opción es el secado solar, principalmente, el de tipo indirecto, a través de captadores solares de placa plana (CSPP). El objetivo de este trabajo fue analizar los recientes desarrollos de los CSPP, características, ventajas, desventajas, eficiencia y diversas tecnologías utilizadas en conjunto, para aumentar la eficiencia térmica en el secado solar. Los CSPP han desarrollado, a través de la hibridación con la utilización de otras fuentes de energía (eléctrica, biomasa, solar), un incremento en su eficiencia que los vuelve cada vez más viables para ser utilizados en procesos comerciales de secado de alimentos.

Biografía del autor/a

Eduardo Figueroa-Garcia, Tecnológico Nacional de México, Instituto Tecnológico de Tlajomulco, Tlajomulco de Zúñiga, Jalisco, México. / Tecnológico Nacional de México, Instituto Tecnológico José Mario Molina Pasquel y Henríquez, Campus Cocula, calle Tecnológico núm. 1000, colonia Lomas de Cocula, Cocula, Jalisco, México, C. P. 48500.

Profesor de Asignatura / Departamento de ingenierías

Citas

Abubakar, S., Umaru, S., Kaisan, M. U., Umar, U. A., Ashok, B., and Nanthagopal, K. (2018). Development and performance comparison of mixed-mode solar crop dryers with and without thermal storage. Renewable Energy. 128: 285-298. DOI: https://doi.org/10.1016/j.renene.2018.05.049

Abuşka, M., Şevik, S., and Kayapunar, A. (2019). A comparative investigation of the effect of honeycomb core on the latent heat storage with PCM in solar air heater. Applied Thermal Engineering. 148: 684-693. DOI: https://doi.org/10.1016/j.applthermaleng.2018.11.056

Al-damook, A. and Khalil, W. H. (2017). Experimental evaluation of an unglazed solar air collector for building space heating in Iraq. Renewable Energy. 112: 498-509. DOI: https://doi.org/10.1016/j.renene.2017.05.051

Ananno, A. A., Masud, M. H., Dabnichki, P., and Ahmed, A. (2020). Design and numerical analysis of a hybrid geothermal PCM flat plate solar collector dryer for developing countries. Solar Energy. 196: 270-286. DOI: https://doi.org/10.1016/j.solener.2019.11.069

Arunsandeep, G., Lingayat, A., Chandramohan, V. P., Raju, V. R. K., and Reddy, K. S. (2018). A numerical model for drying of spherical object in an indirect type solar dryer and estimating the drying time at different moisture level and air temperature. International Journal of Green Energy. 15(3): 189-200. DOI: https://doi.org/10.1080/15435075.2018.1433181

Bokor, B., Akhan, H., Eryener, D., and Kajtár, L. (2019). The potential of solar air heating in the turkish industrial sector. Periodica Polytechnica Mechanical Engineering. 63(1): 57-66. DOI: https://doi.org/10.3311/PPme.13028

Borode, A., Ahmed, N., and Olubambi, P. (2019). A review of solar collectors using carbon-based nanofluids. Journal of Cleaner Production. 24: 118311. DOI: https://doi.org/10.1016/j.jclepro.2019.118311

Bosomtwe, A., Danso, J. K., Osekre, E. A., Opit, G. P., Mbata, G., Armstrong, P., and Akowuah, J. O. (2019). Effectiveness of the solar biomass hybrid dryer for drying and disinfestation of maize. Journal of Stored Products Research. 83: 66-72. DOI: https://doi.org/10.1016/j.jspr.2019.05.011

Calín-Sánchez, Á., Lipan, L., Cano-Lamadrid, M., Kharaghani, A., Masztalerz, K., Carbonell-Barrachina, Á. A., and Figiel, A. (2020). Comparison of traditional and novel drying techniques and its effect on quality of fruits, vegetables and aromatic herbs. Foods. 9(9): 1261. DOI: https://doi.org/10.3390/foods9091261

Camas-Nafate, M. P., Alvarez-Gutiérrez, P., Valenzuela-Mondaca, E., Castillo-Palomera, R., and Perez-Luna, and. D. C. (2019). Improved agricultural products drying through a novel double collector solar device. Sustainability. 11(10): 2920. DOI: https://doi.org/10.3390/su11102920

Catorze, C., Tavares, A. P., Cardão, P., Castro, A., Silva, M. E., Ferreira, D. W., ..., and Brás, I. (2022). Study of a solar energy drying system—Energy savings and effect in dried food quality. Energy Reports. 8: 392-398. DOI: https://doi.org/10.1016/j.egyr.2022.01.070

Charvát, P., Klimeš, L., Pech, O., and Hejčík, J. (2019). Solar air collector with the solar absorber plate containing a PCM–Environmental chamber experiments and computer simulations. Renewable Energy. 143: 731-740. DOI: https://doi.org/10.1016/j.renene.2019.05.049

El-Hage, H., Herez, A., Ramadan, M., Bazzi, H., and Khaled, M. (2018). An investigation on solar drying: A review with economic and environmental assessment. Energy. 157: 815-829. DOI: https://doi.org/10.1016/j.energy.2018.05.197

El-Khadraoui, A., Bouadila, S., Kooli, S., Farhat, A., and Guizani, A. (2017). Thermal behavior of indirect solar dryer: Nocturnal usage of solar air collector with PCM. Journal of Cleaner Production. 148: 37-48. DOI: https://doi.org/10.1016/j.jclepro.2017.01.149

El-Sebaii, A. A. and Shalaby, S. M. (2017). Experimental investigation of drying thymus cut leaves in indirect solar dryer with phase change material. Journal of Solar Energy Engineering. 139(6). DOI: https://doi.org/10.1115/1.4037816

Espinoza, J. (2016). Innovación en el deshidratado solar. Ingeniare. Revista Chilena de Ingeniería. 24: 72-80. DOI: https://doi.org/10.4067/S0718-33052016000500010

Essalhi, H., Tadili, R., and Bargach, M. N. (2017). Conception of a solar air collector for an indirect solar dryer. Pear Drying Test. Energy Procedia. 141: 29-33. DOI: https://doi.org/10.1016/j.egypro.2017.11.114

Fudholi, A. and Sopian, K. (2019). A review of solar air flat plate collector for drying application. Renewable and Sustainable Energy Reviews. 102: 333-345. DOI: https://doi.org/10.1016/j.rser.2018.12.032

Fudholi, A., Sopian, K., Bakhtyar, B., Gabbasa, M., Othman, M. Y., and Ruslan, M. H. (2015). Review of solar drying systems with air based solar collectors in Malaysia. Renewable and Sustainable Energy Reviews. 51: 1191-1204. DOI: https://doi.org/10.1016/j.rser.2015.07.026

García, R. P., del-Rio-Oliveira, S., and Scalon, V. L. (2019). Thermal efficiency experimental evaluation of solar flat plate collectors when introducing convective barriers. Solar Energy. 182: 278-285. DOI: https://doi.org/10.1016/j.solener.2019.02.048

Goud, M., Reddy, M. V. V., Chandramohan, V. P., and Suresh, S. (2019). A novel indirect solar dryer with inlet fans powered by solar PV panels: Drying kinetics of Capsicum Annum and Abelmoschus esculentus with dryer performance. Solar Energy. 194: 871-885. DOI: https://doi.org/10.1016/j.solener.2019.11.031

Guerra, N., Guevara, M., Palacios, C., and Crupi, F. (2018). Operation and physics of photovoltaic solar cells: an overview. I+ D Tecnológico. 14(2): 84-95. DOI: https://doi.org/10.33412/idt.v14.2.2077

Gunawan, Y., Margono, K. T., Rizky, R., Putra, N., Al-Faqih, R., Hakim, I. I., ..., and Nafis, S. (2021). Enhancing the performance of conventional coffee beans drying with lowtemperature geothermal energy by applying HPHE: An experimental study. Open Agriculture. 6(1): 807-818. DOI: https://doi.org/10.1515/opag-2021-0053

Han, W., Chau, K. T., and Lam, W. H. (2019). All-utensil domestic induction heating system. Energy Conversion and Management. 195: 1035-1043. DOI: https://doi.org/10.1016/j.enconman.2019.05.093

Hashim, N., Daniel, O., and Rahaman, E. (2014). A preliminary study: kinetic model of drying process of pumpkins (Cucurbita moschata) in a convective hot air dryer. Agriculture and Agricultural Science Procedia. 2(2): 345-352. DOI: https://doi.org/10.1016/j.aaspro.2014.11.048

Helvaci, H. U., Menon, A., Aydemir, L. Y., Korel, F., and Akkurt, G. G. (2019). Drying of olive leaves in a geothermal dryer and determination of quality parameters of dried product. Energy Procedia. 161: 108-114. DOI: https://doi.org/10.1016/j.egypro.2019.02.065

Karki, S., Haapala, K. R., and Fronk, B. M. (2019). Technical and economic feasibility of solar flat-plate collector thermal energy systems for small and medium manufacturers. Applied Energy. 254: 113649. DOI: https://doi.org/10.1016/j.apenergy.2019.113649

Lee, C. (2018). Tracking Clean Energy Progress (TCEP): Key trends in energy transitions. [En línea]. Disponible en: https://www.iea.org/topics/tracking-clean-energy-progress. Fecha de consulta: 28 de noviembre de 2020.

Lingayat, A., Chandramohan, V. P., and Raju, V. R. K. (2017). Design, development, and performance of indirect type solar dryer for banana drying. Energy Procedia. 109: 409-416. DOI: https://doi.org/10.1016/j.egypro.2017.03.041

López-Vidaña, E. C., Cesar-Munguía, A. L., García-Valladares, O., Pilatowsky, I., and Brito-Orosco, R. (2020). Thermal performance of a passive, mixed-type solar dryer for tomato slices (Solanum lycopersicum). Renewable Energy. 147: 845-855. DOI: https://doi.org/10.1016/j.renene.2019.09.018

Montero, I., Miranda, M. T., Sepúlveda, F. J., Arranz, J. I., Rojas, C. V., and Nogales, S. (2015). Solar dryer application for olive oil mill wastes. Energies. 8(12): 14049-14063. DOI: https://doi.org/10.3390/en81212415

Murali, S., Amulya, P. R., Alfiya, P. V., Delfiya, D. A., and Samuel, M. P. (2020). Design and performance evaluation of solar-LPG hybrid dryer for drying of shrimps. Renewable Energy. 147: 2417-2428. DOI: https://doi.org/10.1016/j.renene.2019.10.002

Natarajan, K., Thokchom, S. S., Verma, T. N., and Nashine, P. (2017). Convective solar drying of Vitis vinifera & Momordica charantia using thermal storage materials. Renewable Energy. 113: 1193-1200. DOI: https://doi.org/10.1016/j.renene.2017.06.096

Ndukwu, M. C., Bennamoun, L., and Abam, F. I. (2018). Experience of solar drying in Africa: Presentation of designs, operations, and models. Food Engineering Reviews. 10(4): 211-244. DOI: https://doi.org/10.1007/s12393-018-9181-2

Ortiz-Hernandez, A. A., Araiza-Esquivel, M., Delgadillo-Ruiz, L., Ortega-Sigala, J. J., Durán-Muñoz, H. A., Mendez-Garcia, V. H., and Vega-Carrillo, H. R. (2020). Physical characterization of sunflower seeds dehydrated by using electromagnetic induction and low-pressure system. Innovative Food Science & Emerging Technologies. 60: 102285. DOI: https://doi.org/10.1016/j.ifset.2019.102285

Parikh, D. and Agrawal, G. D. (2012). Solar drying in hot and dry climate of Jaipur. International Journal of Renewable Energy Research (IJRER). 1(4): 224-231.

Rizal, T. A. and Muhammad, Z. (2018). Fabrication and testing of hybrid solar-biomass dryer for drying fish. Case Studies in Thermal Engineering. 12: 489-496. DOI: https://doi.org/10.1016/j.csite.2018.06.008

Samimi-Akhijahani, H. and Arabhosseini, A. (2018). Accelerating drying process of tomato slices in a PV-assisted solar dryer using a sun tracking system. Renewable Energy. 123: 428-438. DOI: https://doi.org/10.1016/j.renene.2018.02.056

Sandali, M., Boubekri, A., Mennouche, D., and Gherraf, N. (2019). Improvement of a direct solar dryer performance using a geothermal water heat exchanger as supplementary energetic supply. An experimental investigation and simulation study. Renewable Energy. 135: 186-196. DOI: https://doi.org/10.1016/j.renene.2018.11.086

Shalaby, S. M., Bek, M. A., and El-Sebaii, A. A. (2014). Solar dryers with PCM as energy storage medium: A review. Renewable and Sustainable Energy Reviews. 33: 110-116. DOI: https://doi.org/10.1016/j.rser.2014.01.073

Sharma, A. K., Sharma, C., Mullick, S. C., and Kandpal, T. C. (2017). Solar industrial process heating: A review. Renewable and Sustainable Energy Reviews. 78: 124-137. DOI: https://doi.org/10.1016/j.rser.2017.04.079

Shreelavaniya, R., Kamaraj, S., Subramanian, S., Pangayarselvi, R., Murali, S., and Bharani, A. (2021). Experimental investigations on drying kinetics, modeling and quality analysis of small cardamom (Elettaria cardamomum) dried in solar-biomass hybrid dryer. Solar Energy. 227: 635-644. DOI: https://doi.org/10.1016/j.solener.2021.09.016

Simonetti, M., Restagno, F., Sani, E., and Noussan, M. (2020). Numerical investigation of direct absorption solar collectors (DASC) based on carbon-nanohorn nano-fluids, for low temperature applications. Solar Energy. 195: 166-175. DOI: https://doi.org/10.1016/j.solener.2019.11.044

Tarigan, E. (2018). Mathematical modeling and simulation of a solar agricultural dryer with back-up biomass burner and thermal storage. Case Studies in Thermal Engineering. 12: 149-165. DOI: https://doi.org/10.1016/j.csite.2018.04.012

Téllez, M. C., Sierra, J. C. O., Zárraga, F. L., and Álvarez, D. C. M. (2019). Nut drying of India cultivated in Campeche, México through direct solar technologies and under controlled conditions. Revista Bistua Facultad de Ciencias Basicas. 17(3): 60-69. DOI: https://doi.org/10.24054/01204211.v3.n3.2019.3566

Tlatelpa-Becerro, A., Rico-Martínez, R., Urquiza-Beltrán, G., and Calderón-Ramírez, M. (2020). Obtaining of Crataegus Mexicana leaflets using an indirect solar dryer. Revista Mexicana de Ingeniería Química. 19(2): 669-676. DOI: https://doi.org/10.24275/rmiq/Alim896

Torres-Gallo, R., Miranda-Lugo, P. J., and Martínez-Padilla, K. A. (2017). Design and construction of a hybrid system of heating air by combustion of biomass and solar radiation, using phase change material (PCM) as a source of thermal storage, for cassava drying. TecnoLógicas. 20(39): 71-83. DOI: https://doi.org/10.22430/22565337.693

Voigt, A. L., da-Cunha, T. V., and Bohórquez, C. E. N. (2020). Conception, implementation, and evaluation of induction wire heating system applied to hot wire gtaw (ihw-gtaw). Journal of Materials Processing Technology. 281: 116615. DOI: https://doi.org/10.1016/j.jmatprotec.2020.116615

Xue, Y., Wang, C., Hu, Z., Zhou, Y., Liu, G., Hou, H., ..., and Li, J. (2018). Thermal treatment on sewage sludge by electromagnetic induction heating: Methodology and drying characterization. Waste Management. 78: 917-928. DOI: https://doi.org/10.1016/j.wasman.2018.07.009

Zhou, C. Y., Wang, C., Cai, J. H., Bai, Y., Yu, X. B., Li, C. B., ..., and Cao, J. X. (2019). Evaluating the effect of protein modifications and water distribution on bitterness and adhesiveness of Jinhua ham. Food Chemistry. 293: 103-111. DOI: https://doi.org/10.1016/j.foodchem.2019.04.095

Publicado

2022-07-21

Cómo citar

Figueroa-Garcia, E., & Chávez-Rodríguez, A. M. . . (2022). Captadores solares de placa plana para el secado solar indirecto de alimentos: características y aplicaciones. CienciaUAT, 17(1), 162–170. https://doi.org/10.29059/cienciauat.v17i1.1571

Número

Sección

Biotecnología y Ciencias Agropecuarias

Artículos similares

<< < 6 7 8 9 10 11 

También puede Iniciar una búsqueda de similitud avanzada para este artículo.