Capacidad antioxidante y mecanismo de acción de pigmentos en organismos marinos

Autores/as

  • Josafat Marina Ezquerra-Brauer Universidad de Sonora, Departamento de Investigación y Posgrado en Alimentos, boulevard Luis Encinas y Rosales s/n, col. Centro, Hermosillo, Sonora, México, C. P. 83000. https://orcid.org/0000-0001-6838-4395
  • Jesús Enrique Chan-Higuera Universidad de Sonora, Departamento de Investigación y Posgrado en Alimentos, boulevard Luis Encinas y Rosales s/n, col. Centro, Hermosillo, Sonora, México, C. P. 83000.

DOI:

https://doi.org/10.29059/cienciauat.v15i2.1501

Palabras clave:

actividad biológica, antioxidante, compuestos naturales, organismos marinos

Resumen

Los organismos marinos poseen maravillosos colores que los hacen muy atractivos. Las características únicas de los compuestos sintetizados por especies de origen marino van más allá de su apariencia. Los pigmentos responsables de esos colores son capaces también de generar diversas actividades biológicas, como la capacidad antioxidante, la cual puede ocurrir a través de diversos mecanismos. Esto ha propiciado un aumento de su investigación, debido a su amplia aplicación en la biotecnología, farmacéutica, cosmética y alimentación de organismos vivos, expandiendo los estudios tanto in vitro como en ensayos in vivo. El objetivo de este trabajo fue compilar y describir diversos estudios recientes, enfocados en demostrar y elucidar los mecanismos de acción de los diferentes compuestos bioquímicos con actividad antioxidante, provenientes de algunos organismos marinos. Para ello, se utilizaron las bases de datos Scopus®, Web of Science™ y Microsoft Academic. Los pigmentos provenientes de organismos marinos representan una alternativa promisoria frente a los antioxidantes y aditivos sintéticos utilizados en la actualidad. El establecimiento y comprensión de los mecanismos de acción de los componentes pigmentados bioactivos, aislados de los organismos marinos, permitirá determinar con mayor precisión su posible aplicación en la industria.

Citas

Aubourg, S., Torres-Arreola, W., Trigo, M., and Ezquerra-Brauer, J. (2016). Partial characterization of jumbo squid skin pigment extract and its antioxidant potential in a marine oil system. European Journal of Lipid Science and Technology. 118(9): 1293-1304.

Başkan, K., Tütem, E., Özer, N., and Apak, R. (2013). Spectrophotometric and chromatographic assessment of contributions of carotenoids and chlorophylls to the total antioxidant capacities of plant foods. Journal of Agricultural and Food Chemistry. 61(47): 11371-11381.

Chan-Higuera, J., Ezquerra-Brauer, J., Lipan, L., Cano-Lamadrid, M., Rizzitano, R., and Carbonell-Barrachina, A. (2019a). Evaluation of Dosidicus gigas skin extract as an antioxidant and preservative in tuna pâté. Foods. 8(12): 693.

Chan-Higuera, J., Santacruz-Ortega, H., Carbonell-Barrachina, A., Burgos-Hernández, A., Robles-Sánchez, R., Cruz-Ramírez, S., and Ezquerra-Brauer, J. (2019b). Xanthommatin is behind the antioxidant activity of the skin of Dosidicus gigas. Molecules. 24(19): 3420.

Chang, C., Chang, C., and Lai, G. (2013). Reactive oxygen species scavenging activities in a chemiluminescence model and neuroprotection in rat pheochromocytoma cells by astaxanthin, betacarotene, and canthaxanthin. The Kaohsiung Journal of Medical Sciences. 29(8): 412-21.

Chen, C., Tao, H., Chen, W., Yang, B., Zhou, X., Luo, X., and Liu, Y. (2020). Recent advances in the chemistry and biology of azaphilones. RSC Advances. 10(17): 10197-10220.

Chen, W., Chen, R., Liu, Q., He, Y., He, K., Ding, X., …, and Chen, F. (2017). Orange, red, yellow: biosynthesis of azaphilone pigments in Monascus fungi. Chemical Science. 8(7): 4917-4925.

Chintong, S., Phatvej, W., Rerk-Am, U., Waiprib, Y., and Klaypadrit, W. (2019). In vitro antioxidant, antityrosinase, and cytotoxic activities of astaxanthin from shrimp waste. Antioxidants. 8(5): 128.

Dontsov, A., Fedorovich, I., Lindström, M., and Ostrovsky, M. (1999). Comparative study of spectral and antioxidant properties of pigments from the eyes of two Mysis relicta (Crustacea, Mysidacea) populations, with different light damage resistance. Journal of Comparative Physiology B. 169(3): 157-164.

Dontsov, A., Sakina, N. L., Yakovleva, M. A., Bastrakov, A. I., Bastrakova, I. G., Zagorinsky, A. A., ..., and Ostrovsky, M. A. (2020a). Ommochromes from the compound eyes of insects: physicochemical properties and antioxidant activity. Biochemistry (Moscow). 85(6): 668-678.

Dontsov, A., Ushakova, N., and Sadykova, V. (2020b). Ommochromes from Hermetia illucens: isolation and study of antioxidant characteristics and antimicrobial activity. Applied Biochemistry and Microbiology. 56(1): 91-95.

Dose, J., Matsugo, S., Yokokawa, H., Koshida, Y., Okazaki, S., Seidel, U., …, and Esatbeyoglu, T. (2016). Free radical scavenging and cellular antioxidant properties of astaxanthin. International Journal of Molecular Sciences. 17(1): 103.

Ezquerra-Brauer, J. and Aubourg, S. (2019). Recent trends for the employment of jumbo squid (Dosidicus gigas) by-products as a source of bioactive compounds with nutritional, functional and preservative applications: a review. International Journal of Food Science and Technology. 54(4): 987-998.

Ezquerra-Brauer, J., Miranda, J., Chan-Higuera, J., Barros-Velázquez, J., and Aubourg, S. (2017). New icing media for quality enhancement of chilled hake (Merluccius merluccius) using a jumbo squid (Dosidicus gigas) skin extract. Journal of the Science of Food and Agriculture. 97(10): 3412-3419.

Fernandes, A. S., Nogara, G. P., Menezes, C. R., Cichoski, A. J., Mercadante, A. Z., Jacob-Lopes, E., and Zepka, L. Q. (2017). Identification of chlorophyll molecules with peroxyl radical scavenger capacity in microalgae Phormidium autumnale using ultrasound-assisted extraction. Food Research International. 99(3): 1036-1041.

Gammone, M., Riccioni, G., and D’Orazio, N. (2015). Marine carotenoids against oxidative stress: effects on human health. Marine Drugs. 13(10): 6226-6246.

Gao, J., Yang, S., and Qin, J. (2013). Azaphilonoids: chemistry and biology. Chemical Reviews. 113(7): 4755-811.

Hou, Y., Carne, A., McConnell, M., Bekhit, A., Mros, S., Amagase, K., and Bekhit, A. (2020a). In vitro antioxidant and antimicrobial activities, and in vivo anti-inflammatory activity of crude and fractionated PHNQs from sea urchin (Evechinus chloroticus). Food Chemistry. 316: 126339.

Hou, Y., Carne, A., McConnell, M., Mros, S., Bekhit, A., and Bekhit, A. (2020b). Macroporous resin extraction of PHNQs from Evechinus chloroticus sea urchin and their in vitro antioxidant, anti-bacterial and in silico anti-inflammatory activities. LWT – Food Science and Technology. 131: 109817.

Hsu, C., Chao, P., Hu, S., and Yang, C. (2013). The antioxidant and free radical scavenging activities of chlorophylls and pheophytins. Food and Nutrition Sciences. 4(8): 1-8.

Jia, Q., Du, Y., Wang, C., Wang Y., Zhu, T., and Zhu, W. (2019). Azaphilones from the marine sponge-derived fungus Penicillium sclerotiorum. Marine Drugs. 17(5): 260.

Kawee-ai, A., Kuntiya, A., and Kim, S. M. (2013). Anticholinesterase and antioxidant activities of fucoxanthin purified from the microalga Phaeodactylum tricornutum. Natural Product Communications. 8(10): 1381-1386.

Lebedev, A., Ivanova, M., and Levitsky, D. (2005). Iron chelators and free radical scavengers in naturally occurring polyhydroxylated 1,4-Naphthoquinones. Hemoglobin. 32(1-2): 165-179.

Li, D., Zhou, D., Zhu, B., and Mao, L. (2013). Extraction, structural characterization and antioxidant activity of polyhydroxylated 1, 4-naphthoquinone pigments from spines of sea urchin Glyptocidaris crenularis and Strongylocentrotus intermedius. European Food Research and Technology. 237(3): 331-339.

Li, T., Liu, R., Wang, X., Luo, J., Luo, J., Kong, L., and Yang, M. (2018). Hypoxia-Protective Azaphilone Adducts from Peyronellaea glomerata. Journal of Natural Products. 81(5): 1148-1153.

Maoka, T. (2011). Carotenoids in marine animals. Marine Drugs. 9(2):278-293.

Miyanga, A. (2017). Structure and function of polyketide biosynthetic enzymes: various strategies for production of structurally diverse polyketides. Bioscience, Biotechnology and Biochemistry. 81(12): 2227-2236.

Nagini, S., Palitti, F., and Natajaran, A. (2015). Chemopreventive potential of chlorophyllin: A review of the mechanisms of action and molecular targets. Nutrition and Cancer. 67(2): 203-11.

Polonik, N., Sabutskii, Y., and Polonik, S. (2018). Free radical scavenging activity of synthetic and naturally occurring polyhydroxy-, aminohydroxynaphthazarins and related compounds. Natural Product Communications. 13(10): 1319-1322.

Ramírez-Ortega, D., Salazar, A., González-Esquivel, D., and Ríos, C. (2017). 3-Hydroxykynurenine and 3-Hydroxyanthranilic acid enhance the toxicity induced by Copper in rat astrocyte culture. Oxidative Medicine and Cellular Longevity. 2017: 2371895.

Rigane, G., Bouaziz, M., Sayadi, S., and Salem, R. (2013). Effect of storage on refined olive oil composition: stabilization by addition of chlorophyll pigments and squalene. Journal of Oleo Science. 62(12): 981-987.

Romero, Y. and Martínez, A. (2015). Antiradical capacity of ommochromes. Journal of Molecular Modeling. 21(8): 2773.

Santocono, M., Zurria, M., Berrettini, M., Fedelli, D., and Falcioni, G. (2007). Lutein, zeaxanthin and astaxanthin protect against DNA damage in SK-N-SH human neuroblastoma cells induced by reactive nitrogen species. Journal of Photochemistry and Photobiology. B, Biology. 88(1): 1-10.

Sathasivam, R. and Ki, J. S. (2018). A review of the biological activities of microalgal carotenoids and their potential use in healthcare and cosmetic industries. Marine Drugs. 16(1): 26.

Shamim, G., Ranjan, S., Pandey, D., and Ramani, R. (2014). Biochemistry and biosynthesis of insect pigments. European Journal of Entomology. 111(2): 149-164.

Shih, C., Chang, J., Yang, S., Chou, T., and Cheng, H. (2008). Beta-Carotene and canthaxanthin alter the pro-oxidation and antioxidation balance in rats fed a high-cholesterol and high-fat diet. The British Journal of Nutrition. 99(1): 59-66.

Soleimani, S., Yousefzadi, M., Moein, S., and Rezadoost, H. (2016). Identification and antioxidant of polyhydroxylated naphthoquinone pigments from sea urchin pigments of Echinometra mathaei. Medicinal Chemistry Research. 25(7): 1476-1483.

Sy, C., Dangles, O., Borel, P., and Caris-Veyrat, C. (2015). Interactions between carotenoids from marine bacteria and other micronutrients: impact on stability and antioxidant activity. Marine Drugs. 13(11): 7020-7039.

Valery, G., Berdyshev, D., and Novikov, V. (2015). DFT study of mechanisms of the antioxidant effect of natural polyhydroxy-1, 4-naphthoquinones. Reactions of echinamines A and B, metabolites of sea urchin Scaphechinus mirabilis, with hydroperoxyl radical. Russian Chemical Bulletin. 63(9): 1993-1999.

Venugopalan, V., Tripathi, S., Nahar, P., Saradhi, P., Das, R., and Gautam, H. (2013). Characterization of canthaxanthin isomers isolated from a new soil Dietzia sp. and their antioxidant activities. Journal of Microbiology and Biotechnology. 23(2): 237-245.

Wu, H. C., Cheng, M. J., Wu, M. D., Chen, J. J., Chen, Y. L., Chang, H. S., and Chen, K. P. (2018). Secondary metabolites from the fermented rice of the fungus Monascus purpureus and their bioactivities. Natural Product Research. 33(24): 3541-3550.

Yang, J., Tseng, Y., Lee, Y., and Mau, J. (2006). Antioxidant properties of methanolic extracts from monascal rice. LWT – Food Science and Technology. 39(7): 740-747.

Zak, P., Lindström, M., Demchuk, J., and Donner, K. (2013). The eye of the opossum shrimp Mysis relicta (Crustacea, Mysidae) contains two visual pigments located in different photoreceptor cells. Doklady Biological Sciences. 449(1): 68-72.

Zhou, D., Qin, L., Zhu, B., and Wang, X. (2011). Extraction and antioxidant property of polyhydroxylated naphthoquinone pigments from spines of purple sea urchin Strongylocentrotus nudus. Food Chemistry. 129(4): 1591-1597.

Publicado

2021-01-30

Cómo citar

Ezquerra-Brauer, J. M., & Chan-Higuera, J. E. (2021). Capacidad antioxidante y mecanismo de acción de pigmentos en organismos marinos. CienciaUAT, 15(2), 186-197. https://doi.org/10.29059/cienciauat.v15i2.1501

Número

Sección

Biotecnología y Ciencias Agropecuarias

Artículos similares

También puede {advancedSearchLink} para este artículo.