Propiedades y posibles aplicaciones de las proteínas de salvado de trigo

Autores/as

  • Guadalupe Chaquilla-Quilca Universidad Nacional Micaela Bastidas de Apurímac, Facultad de Ingeniería, EAP Ing. Agroindustrial. Abancay, Apurímac, Perú.
  • René Renato Balandrán Quintana Centro de Investigación en Alimentación y Desarrollo, A.C., Coordinación de Tecnología de Alimentos de Origen Vegetal, Carretera a La Victoria km 0.6, Hermosillo, Sonora, México, C.P. 83304.
  • Ana María Mendoza-Wilson Centro de Investigación en Alimentación y Desarrollo, A.C., Coordinación de Tecnología de Alimentos de Origen Vegetal, Carretera a La Victoria km 0.6, Hermosillo, Sonora, México, C.P. 83304.
  • Jorge Nemesio Mercado-Ruiz Centro de Investigación en Alimentación y Desarrollo, A.C., Coordinación de Tecnología de Alimentos de Origen Vegetal, Carretera a La Victoria km 0.6, Hermosillo, Sonora, México, C.P. 83304.

DOI:

https://doi.org/10.29059/cienciauat.v12i2.883

Palabras clave:

proteínas de cereales, subproductos agroindustriales, tecnologías emergentes.

Resumen

 

El salvado de trigo se destina principalmente al consumo animal, por lo que algunos de sus componentes son subutilizados, representando oportunidades de valor agregado. Constituye las capas externas del grano y contiene hasta 18 % en peso de proteínas con mejor calidad que las de la harina. Estas proteínas no son aprovechadas debido a que la mayoría están protegidas por una matriz de polisacáridos, indigerible para el sistema gastrointestinal humano, por lo que es necesaria su extracción. Tradicionalmente, las proteínas de salvado han sido recuperadas mediante extracción alcalina y se han propuesto como ingredientes para la elaboración de productos alimenticios. Sin embargo, su uso es casi inexistente, debido a que los procesos de extracción son agresivos y no redituables. El objetivo del presente trabajo fue describir las propiedades de las proteínas del salvado de trigo, así como sus usos potenciales. Entre sus propiedades destacan la digestibilidad, el perfil de aminoácidos y la capacidad de absorción de grasa. La fracción soluble en agua de estas proteínas, por su fácil extracción, podría tener valor agregado al utilizarse en tecnologías emergentes: como fuente de péptidos bioactivos, en la producción de nanopartículas con aplicaciones industriales o como matrices para procesos de biomineralización artificial.

 

Biografía del autor/a

René Renato Balandrán Quintana, Centro de Investigación en Alimentación y Desarrollo, A.C., Coordinación de Tecnología de Alimentos de Origen Vegetal, Carretera a La Victoria km 0.6, Hermosillo, Sonora, México, C.P. 83304.

Coordinación de Tecnología de Alimentos de Origen Vegetal. Investigador titular.

Citas

Addadi, L., A. Gal, D., Faivre, Sche el, A., and Weiner, S. (2016). Control of biogenic nanocrystal formation in biomineralization. Israel Journal of Chemistry. 56(4): 227-241.

Apprich, S., Tirpanalan, O., Hell, J., Reisinger, M., Böhmdor-fer, S., Siebenhandl-Ehn, S., ..., and Kneifel, W. (2014). Wheat bran-based biore nery 2: Valorization of products. LWT- Food Science and Technology. 56(2): 222-231.

Arte, E., Rizzello, C. G., Verni, M., Nordlund, E., Katina, K., and Coda, R. (2015). Impact of enzymatic and microbial bioprocessing on protein modification and nutritional properties of wheat bran. Journal of Agricultural and Food Chemistry. 63(39): 8685-8693.

Arte, E. Katina, K., Holopainen-Mantila, U., and Nordlund, E. (2016). Effect of hydrolyzing enzymes on wheat bran cell wall integrity and protein solubility. Cereal Chemistry. 93(2): 162-171.

Asenath-Smith, E., Li, H., Keene, E. C., Wei-Seh, Z., and Estro , L. A. (2012). Crystal growth of calcium carbonate in hydrogels as a model of biomineralization. Advanced Functional Materials. 22(14): 2891-2914.

Balandrán-Quintana, R., Valdéz-Covarrubias, M. A., Mendoza-Wilson, A. M., and Sotelo-Mundo, R. (2013). α-Lactal- bumin hydrolysate spontaneously produces diskshaped nanoparticles. International Dairy Journal. 32(2): 133-135.

Balandrán-Quintana, R. R., Mercado-Ruiz, J. N., and Mendoza-Wilson, A. M. (2015). Wheat bran proteins: A review of their uses and potential. Food Reviews International. 31(3): 279-293.

Balandrán-Quintana, R. R. (2018). Recovery of proteins from cereal processing by-products. In C. M. Galanakis (Ed.), Sustainable recovery and reutilization of cereal processing by-products. (En prensa). San Diego, CA: Elsevier.

Bolontrade, A. J., Scilingo, A. A., and Anón, M. C. (2016). Amaranth proteins foaming properties: Film rheology and foam stability – Part 2. Colloids and Surfaces B: Biointerfaces. 141: 643-650.

Brewer, L. R., Kubola, J., Siriamornpun, S., Herald, T. J., and Shi, Y. S. (2014). Wheat bran particle size in uence on phytochemical extractability and antioxidant properties. Food Chemistry. 152: 483-490.

Campas-Ríos, M., Mercado-Ruiz, J., Valdéz-Covarrubias, M. A., Islas-Rubio, A. R., Mendoza-Wilson, A. M., and Balandrán-Quintana, R. (2012). Hydrolysates from wheat bran albumin as color-adding agents and inhibitors of apple polyphenol oxidase. Journal of Food Biochemistry. 36(4): 470-478.

CANIMOLT-Reporte estadístico (2014). Cámara Nacional de la Industria Molinera del Trigo, en Panorama global del trigo. [En línea]. Disponible en: https://drive.google.com/le/d/0B7aliWpRu8y3ck1nRmZNNHJUcWc/view. Fecha de consulta: 15 de noviembre de 2016.

Chabanon, E., Mangin, D., and Charcosset, C. (2016). Membranes and crystallization processes: State of the art and prospects. Journal of Membrane Science. 509: 57-67.

Chaquilla-Quilca, G., Balandrán-Quintana, R. R., Azamar- Barrios, J. A., Ramos-Clamont Montfort, G., Mendoza-Wil- son, A. M., Mercado-Ruiz, J. N., ..., and Luna-Valdez, J. G. (2016). Synthesis of tubular nanostructures from wheat bran albumins during proteolysis with V8 protease in the presence of calcium ions. Food Chemistry. 200: 16-23.

Corke, H. (2004). Grain, morphology of internal structure. In C. Wrigley, H Corke, and Y. C. Walker (Eds.), Encyclopedia of Grain Science (pp. 30-38). New York, USA: Editorial Elsevier Ltd.

Cornell, H. (2003). The chemistry and biochemistry of wheat. In S. P. Cauvain (Ed.), Bread Making Improving Quality (pp. 31-70). Cambridge, UK: Woodhead Publishing.

Curti, E., Carini, E., Bonacini, G., Tribuzio, G., and Vittadi- ni, E. (2013). E ect of the addition of bran fractions on bread properties. Journal of Cereal Science. 57(3): 325-332.

De-Brier, N., Gomand, S. V., Celus, I., Courtin, C. M., Brijs, K., and Delcour, J. A. (2015). Extractability and chromato- graphic characterization of wheat (Triticum aestivum L.) bran protein. Journal of Food Science. 80(5): 967-974.

De-Mora, B. R. R. C. (2015). Positive e ects of wheat bran for digestive health; Scientific evidence. Nutrición hospitalaria. 32: 41-45.

Dexter, J. E. and Sarkar, A. K. (2004). Dry Milling. In C. Wrigley, H. Corke, and Y. C. Walker (Eds.), Encyclopedia of Grain Science (pp. 363-375). New York, USA: Editorial Elsevier Ltd.

Elzoghby, A. O., Samy, W. M., and Elgindy, N. A. (2012). Albumin-based nanoparticles as potential controlled release drug delivery systems. Journal of Controlled Release. 157(2): 168-182.

Fama, L., Bittante, A. M. B. Q., Sobral, P. J. A, Goyanes, S., and Gerschenson, L. N. (2010). Garlic powder and wheat bran as fillers: Their effect on the physicochemical properties of edible biocomposites. Materials Science and Engineering: C. 30(6): 853-859.

Fabian, C. and Ju, Y. S. (2011). A review on rice bran protein: Its properties and extraction methods. Critical reviews on Food Science and Nutrition. 51(9): 816-827.

FAOSTAT, Food and Agriculture Organization of the United Nations (2016). Food and Agriculture Organization of the United Nations. Statistics Division. [En línea]. Dispo nible en: http://faostat3.fao.org/browse/Q/QC/E. Fecha de consulta: 15 de noviembre de 2016.

Fardet, A. (2010). New hypotheses for the health-protective mechanisms of whole-grain cereals: What is beyond fibre?. Nutrition Research Reviews. 23(1): 65-134.

Favaro, L., Basaglia, M., van Zyl, W. H., and Casella, S. (2013). Using an efficient fermenting yeast enhances ethanol pro-duction from un ltered wheat bran hydrolysates. Applied Energy. 102: 170–178.

Fellers, D. A., Sinkey, V., Shephered, A. D., and Pence, J. W. (1966). Solubilization and recovery of protein from wheat millfeeds. Cereal Chemistry. 43(1): 1-13.

Goesaert, H., Brijs, K., Veraverbeke, W. S., Courtin, C. M., Gebruers, K., and Delcour, J. A. (2005). Wheat our constituents: how they impact bread quality, and how to impact their functionality. Trends in Food Science & Technology. 16(1): 12-30.

Graveland-Bikker, J., Ipsen, R., Otte, J., and de Kruif, G. (2004). Influence of calcium on the selfassembly of partially hydrolyzed α-Lactalbumin. Langmuir. 20(16): 6841-6846.

Haque, A., Shams-Ud-Din, and Haque, A, (2002). The effect of aqueous extracted wheat bran on the baking quality of biscuit. International Journal of Food Science and Technology. 37(4): 453-462.

Heuzé, V., Tran, G., Baumont, R., Lebas, F., Lessire, M., Noblet, J., and Renaudeau, D. (2013). Animal feeds resources information system. Wheat bran. A programme by IN- RA, CIRAD, AFZ and FAO, in Feedipedia.org. [En línea]. Disponible en: http://www.feedipedia.org/node/726. Fecha de consulta: 5 de febrero de 2014.

Hossain, K., Ulven, C., Glover, K., Ghavami, F., Simsek, S., Alamri, M. S., ..., and Mergoum, M. (2013). Interdependence of cultivar and environment on ber composition in wheat bran. Australian Journal of Crop Science. 7(4): 525-531.

Idris, W. H., Babiker, E. E., and El-Tinay, A. H. (2003). Fractionation, solubility and functional properties of wheat bran proteins as influenced by pH and/or salt concentration. Molecular Nutrition & Food Research. 47(6): 425-429.

Javed, M., Zahoor, S., Shafaat, S., Mehmooda, I., Ambreen, G., Rashee, H., ..., and Ikram-ul-Haq (2012). Wheat bran as a brown gold: Nutritious value and its biotechnological applications. African Journal of Microbiology Research. 6(4): 724-733.

Jerkovic, A., Kriegel, A., Bradner, J., Atwell, B., Roberts, T., and Willows, R. (2010). Strategic distribution of protec- tive proteins within bran layers of wheat protects the nutrient-rich endosperm. Plant Physiology. 152(3): 1459-1470.

Jones, B. and Gersdor , C. (1923). Proteins of wheat bran. I. Isolation and elementary analyses of a globulin, albumin; and prolamin. Journal of Biological Chemistry. 58(1): 117-131.

Kanwal, F., Rehman, R., Anwar, J., and Saeed, M. (2013). Removal of lead (II) from water by adsorption on novel composites of polyaniline with maize bran, wheat bran and rice bran. Asian Journal of Chemistry. 25(5): 2399-2404.

Kawaguchi, T., Ueno, T., Nogata, Y., Hayakawa, M., Koga, H., and Torimura, T. (2017). Wheatbran autolytic peptides containing a branched-chain amino acid attenuate non-alcoholic steatohepatitis via the suppression of oxidative stress and the upregulation of AMPK/ACC in high-fat diet-fed mice. International Journal of Molecular Medicine. 39(2): 407-414.

Koehler, P. and Wieser, H. (2013). Handbook on sourdough biotechnology. In M. Gobbetti and M. Gänzle (Eds.), Chapter 2: Chemistry of Cereal Grains (Sixth edition) (pp. 11- 45). New York, USA: Springer Science+Business Media.

Locci, E., Laconi, S., Pompei, R., Scano, P., Lai, A., and Ma- rincola, F. C. (2008). Wheat bran biodegradation by Pleuro- tus ostreatus: A solid-state carbon-13 NMR study. Bioresources Technology. 99(10): 4279-4284.

Lohcharoenkal, W., Wang, L., Chen, Y. C., and Rojanasakul, Y. (2014). Protein nanoparticles as drug delivery carriers for cancer therapy. BioMed Research International. 4: 1-12.

Luna-Valdez J. G., Balandrán-Quintana, R., Azamar-Barrios, J., Mercado-Ruiz, J., Clamont-Montfort, G., Mendoza-Wilson, A., and Chaquilla-Quilca, G. (2016). “Wheat bran albumins as organic matrices for artificial biomineralization processes”. Annual meeting of the American Asociation of Cereal Chemists International. Savannah, GA, U.S.A. [En línea]. Disponible en: http://www.aaccnet.org/meetings/ Documents/2016Abstracts/aacc2016abs200.htm. Fecha de consulta: 15 de noviembre de 2016.

Luna-Valdez, J. G., Balandrán-Quintana, R. R., Azamar-Ba- rrios, J. A., Clamont-Montfort, G., Mendoza-Wilson, A. M., Mercado-Ruiz, J. N., ..., and Chaquilla-Quilca, G. (2017). Structural and physicochemical characterization of nanoparticles synthesized from an aqueous extract of wheat bran by a cold-set gelation/desolvation approach. Food Hydrocolloids. 62: 165-173.

Martínez, B., Gómez, M. V., and Rincón, F. (2002). Ácido fítico: Aspectos nutricionales e implicaciones analíticas. Archivos Lationamericanos de Nutrición. 52(3): 219-231.

Meziani, S., Nadaud, I., Gaillard-Martinie, B., Chambon, C., Benali, M., and Branlard, G. (2012). Proteomic analysis of the mature kernel aleurone layer in common and durum wheat. Journal of Cereal Science. 55(3): 323-330.

Morales-Ortega, A., Carvajal-Millán, E., López-Franco, Y., Rascón-Chu, A., Lizardi-Mendoza, J., Torres-Chávez, P., and Campa-Mada, A. (2013). Characterization of water extractable arabinoxylans from spring wheat our: Rheological pro perties and microstructure. Molecules. 18(7): 8417-8428.

Nandini, C. D. and Salimath, P. V. (2001). Carbohydrate composition of wheat, wheat bran, sorghum and Bajra with Good Chapati/Roti (indian at bread) making quality. Food Chemistry. 73(2): 197-203.

Nesterenko, A., Alric, I., Silvestre, F., and Durrieu, V. (2013). Vegetable proteins in microencapsulation: A review of recent interventions and their efectiveness. Industrial Crops and Products. 42: 469-479.

Nogata, Y. and Nagamine, T. (2009). Production of free amino acids and γ-aminobutyric acid by autolysis reactions from wheat bran. Journal of Agricultural and Food Chemistry. 57(4): 1331-1336.

Onipe, O. O., Jideani, A. I., and D. Beswa. (2015). Composition and functionality of wheat bran and its application in some cereal food products. International Journal of Food Science and Technology. 50(12): 2509-2518.

Ortíz-Estrada, A. M., Mercado-Ruiz, J. N., García-Robles, J. M., Islas-Rubio, A. R., Mendoza-Wilson, A. M., and Balandrán-Quintana, R. R. (2012). Wheat bran globulins: Competitive inhibitors of mushroom tyrosinase. Food Science and Biotechnology. 21(3): 633-635.

Patil, G. V. (2003). Biopolymer albumin for diagnosis and in drug delivery. Drug Development Research. 85(3): 219-247.

Prückler, M., Siebenhandl-Ehn, S., Apprich, S., Höltinger, S., Haas, C., Schmid, E., and Kneifel, W. (2014). Wheat bran-based biorefinery 1: Composition of wheat bran and strategies of functionalization. Food Science and Technology. 56(2): 211-221.

Rauner, N., Meuris, M., Dech, S., Godde, J., and Tiller, J. C. (2014). Urease-induced calcification of segmented polymer hydrogels - A step towards arti cial biomineralization. Acta Biomaterialia. 10(9): 3942-3951.

Reisinger, M., Tirpanalan, Ö., Huber, F., Kneifel, W., and Novalin, S. (2014). Investigations on a wheat bran biorefinery involving organosolv fractionation and enzymatic treatment. Bioresource Technology. 170: 53-61.

Rhodes, D. I. and Stone, B. A. (2002). Proteins in walls of wheat aleurone cells. Journal of Cereal Science. 36(1): 83-101.

Roberts, P. J., Simmonds, D. H., Wooton, M., and Wrigley, W. (1985). Extraction of protein and solids from wheat bran. Journal of the Science of Food and Agriculture. 36(1): 5-10.

Rosa-Sibakov, N., Poutanen, K., and Micard, V. (2015). How does wheat grain, bran and aleurone structure impact their nutritional and technological properties?. Trends in Food Science and Technology. 41(2): 118-134.

Rosenfelder, P., Eklund, M., and Mosenthin, R. (2013). Nutritive value of wheat and wheat by-products in pig nutrition: A review. Animal Feed Science and Technology. 185(3): 107-125.

Saunders, R. M., Connors, M. A., Edwards, R. H., and Ko-hler, G. O. (1975). Preparation of protein concentrates from wheat shorts and wheat millrun by a wet alkaline process. Cereal Chemistry. 52(93): 553-567.

Serna-Saldivar, S. O. (2010). Cereal Grains. Properties, Processing and Nutritional Attributes. Boca Raton, FL: CRC Press Taylor and Francis Group. 1 Pp.

Shewry, P. R. (2009). The health grain program opens new opportunities for improving wheat for nutrition and health. Nutrition Bulletin. 34(2): 225-231.

Shewry, P. R., D’Ovidio, R., La andra, D., Jenkins, J. A., Mills, E. N. C., and Bekés, F. (2009). Wheat grain proteins. In K. Khan and P. R. Shewry (Eds.), Wheat Chemistry and Technology. (Second edition) (pp. 223-249). St. Paul, Minnesota, USA: Association of Cereal Chemists, Inc.

Šramková, Z., Gregová, E., and Šturdík, E. (2009). Chemical composition and nutritional quality of wheat grain. Acta Chimica Slovaca. 2(1): 115-138.

Stevenson, L., Phillips, F., O’sullivan, K., and Walton, J. (2012). Wheat bran: its composition and bene ts to health, a european perspective. International Journal of Food Sciences and Nutrition. 63(8): 1001-1013.

Veis, A. and Dorvee, J. R. (2013). Biomineralization mechanisms: a new paradigm for crystal nucleation in organic matrices. Calcified tissue international. 93(4): 307-315.

Waszczynskyj, N., Rao, C., and Da-Silva, R. (1981). Extraction of proteins from wheat bran: application of carbohydrases. Cereal Chemistry. 58: 264-266.

Woerman, J. and Satterlee, L. (1974). Extraction and nutritive quality of wheat protein concentrate. Food Technology. 28: 50–52.

Wongsasulak, S., Patapeejumruswong, M., Weiss, J., Supaphol, P., and Yoovidhya, T. (2010). Electrospinning of food-grade nano bers from cellulose acetate and egg albumen blends. Journal of Food Engineering. 98(3): 370-376.

Yedomon, B., Fessi, H., and Charcosset, C. (2013). Preparation of bovine serum albumin (BSA) nanoparticles by desolvation using a membrane contactor: A new tool for large scale production. European Journal of Pharmaceutics and Biopharmaceutics Part A. 85(3): 398-405.

Zhao, M., Liu, L., Zhong, K., Tong, L., Zhou, X., and Zhou, S. (2015). Effect of steam explosion treatment on the solubility of wheat bran components. Journal Chinese Institute Food Sci. Tech. 15(8): 170-177.

Publicado

2018-01-31

Cómo citar

Chaquilla-Quilca, G., Balandrán Quintana, R. R., Mendoza-Wilson, A. M., & Mercado-Ruiz, J. N. (2018). Propiedades y posibles aplicaciones de las proteínas de salvado de trigo. CienciaUAT, 12(2), 137–147. https://doi.org/10.29059/cienciauat.v12i2.883

Número

Sección

Biotecnología y Ciencias Agropecuarias

Artículos similares

<< < 7 8 9 10 11 12 13 14 > >> 

También puede Iniciar una búsqueda de similitud avanzada para este artículo.