Subsoil zoning in southern Tamaulipas

Authors

  • Julio César Rolón-Aguilar Universidad Autónoma de Tamaulipas, Facultad de Ingeniería Tampico, División de Estudios de Posgrado e Investigación, Centro Universitario Sur, Tampico, Tamaulipas, México, C. P. 89109. https://orcid.org/0000-0002-3700-3796
  • Yuridia Azucena Salmerón-Gallardo Universidad Autónoma de Tamaulipas, Facultad de Ingeniería Tampico, División de Estudios de Posgrado e Investigación, Centro Universitario Sur, Tampico, Tamaulipas, México, C. P. 89109. https://orcid.org/0009-0007-4729-5490
  • Rocío del Carmen Vargas-Castilleja Universidad Autónoma de Tamaulipas, Facultad de Ingeniería Tampico, División de Estudios de Posgrado e Investigación, Centro Universitario Sur, Tampico, Tamaulipas, México, C. P. 89109. https://orcid.org/0000-0003-3930-6245

DOI:

https://doi.org/10.29059/cienciauat.v19i1.1899

Keywords:

geodata, boreholes, zoning

Abstract

Studying the subsoil is essential in the design and construction of infrastructure. The objective of this work was to zone the subsoil using geographic information systems towards a geotechnical map of southern Tamaulipas. The spatial data were integrated from 347 standard penetration test (SPT) boreholes, derived from 119 geotechnical studies conducted from 2011 to 2018. The generated information enabled the construction of 20 referenced analysis units for the metropolitan area of Altamira, Tampico and Ciudad Madero, developing a zoning map of the subsurface into geotechnical groups: zone A: clays, silts and sands; zone B: sandy clays; zone B’: highly plastic clays and zone C: clayey sand. The information generated through the analysis units and zoning map is projected to be useful for subsequent geotechnical exploration studies.

Author Biography

Julio César Rolón-Aguilar, Universidad Autónoma de Tamaulipas, Facultad de Ingeniería Tampico, División de Estudios de Posgrado e Investigación, Centro Universitario Sur, Tampico, Tamaulipas, México, C. P. 89109.

 

 

References

Benavides, O. E. R., Hernández, M. F., Moreno, G. E. y Vilalta, L. O. (1973). El subsuelo de la ciudad de Tampico. En VI Reunión Nacional de Mecánica de Suelos (Ed.), Tomo II. Estado actual del conocimiento. Cimentaciones en áreas urbanas de México: Acapulco, Morelia, Tampico y Yucatán (pp. 1-35). Sociedad Mexicana de Ingeniería Geotécnica, A. C.

Bortolozo, C. A., Motta, M. F. B., Andrade, M. R. M., Lavalle, L. V. A., Mendes, R. M., Simões, S. J. C., Mendes, T. S. G., & Pampuch, L. A. (2019). Combined analysis of electrical and electromagnetic methods with geotechnical soundings and soil characterization as applied to a landslide study in Campos do Jordão City, Brazil. Journal of applied geophysics, 161, 1-14. https://doi.org/https://doi.org/10.1016/j.jappgeo.2018.11.017

Braja, M. D. (2015). Fundamentos de ingeniería geotécnica. Cengage Learning.

Cariolet, J. M., Vuillet, M., & Diab, Y. (2019). Mapping urban resilience to disasters – A review. Sustainable Cities and society, 51, 101746. https://doi.org/https://doi.org/10.1016/j.scs.2019.101746

Ciurleo, M., Cascini, L., & Calvello, M. (2017). A comparison of statistical and deterministic methods for shallow landslide susceptibility zoning in clayey soils. Engineering geology, 223, 71-81. https://doi.org/https://doi.org/10.1016/j.enggeo.2017.04.023

Failache, M. F. & Zuquette, L. V. (2018). Geological and geotechnical land zoning for potential hortonian overland flow in a basin in southern Brazil. Engineering geology, 246, 107-122. https://doi.org/https://doi.org/10.1016/j.enggeo.2018.09.032

Fern, E. J., Di-Murro, V., Soga, K., Li, Z., Scibile, L., & Osborne, J. A. (2018). Geotechnical characterisation of a weak sedimentary rock mass at CERN, Geneva. Tunnelling and underground space technology, 77, 249-260. https://doi.org/https://doi.org/10.1016/j.tust.2018.04.003

Gobierno del Estado (2020). Actualización del programa metropolitano de ordenamiento territorial de Altamira, Ciudad Madero y Tampico. [En línea]. Disponible en: https://bit.ly/3RMk1uG. Fecha de consulta: 25 de junio de 2024.

Hipólito-Ojalvo, F., Zamora-Polo, F., Luque, A., & Naharro-Sequeda, I. (2019). Evaluation of subsoil properties of badajoz (Spain) for construction purposes using geographic information systems. Informes de la construcción, 71(556), 1-9. https://doi.org/10.3989/ic.65204

INEGI, Instituto Nacional de Estadística y Geografía (2018). Diccionario de datos topográficos. Escala 1:20 000. Versión 2. [En línea]. Disponible en: https://bit.ly/3W39rlu. Fecha de consulta: 25 de junio de 2024.

INEGI, Instituto Nacional de Estadística y Geografía (2021). Diccionario de datos topográficos (vectorial). Escala 1:50 000. [En línea]. Disponible en: https://bit.ly/3L9e1bu. Fecha de consulta: 25 de junio de 2024.

Juárez-Camarena, M., Auvinet-Guichard, G., & Méndez-Sánchez, E. (2016). Geotechnical Zoning of Mexico Valley Subsoil. Ingeniería, investigación y tecnología, 17(3), 297-308. https://doi.org/10.1016/j.riit.2016.07.001

Kang-Tsung, Ch. (2013). Geographic Information Systems. McGraw-Hill Higher Education.

Kim, H. S., Sun, C. G., Lee, M. G., & Cho, H. I. (2021). Multivariate geotechnical zonation of seismic site effects with clustering blended model for a city area, South Korea. Engineering geology, 294, 106365. https://doi.org/https://doi.org/10.1016/j.enggeo.2021.106365

Mohan, K., Dugar, S., Pancholi, V., Dwivedi, V. K., Kumar, N., Sairam, B., & Chopra, S. (2024). A multi-scenario based micro seismic hazard assessment of the Bhuj City, western India incorporating geophysical and geotechnical parameters. Quaternary science advances, 13, 100138. https://doi.org/https://doi.org/10.1016/j.qsa.2023.100138

Napoli, M. L., Festa, A., & Barbero, M. (2022). Practical classification of geotechnically complex formations with block-in-matrix fabrics. Engineering geology, 301, 106595. https://doi.org/https://doi.org/10.1016/j.enggeo.2022.106595

Robbins, B. A., Stephens, I. J., & Marcuson, W. F. (2021). Geotechnical Engineering. In D. Alderton & S. A. Elias (Eds.), Encyclopedia of Geology (pp. 377-392). Academic Press. https://doi.org/https://doi.org/10.1016/B978-0-12-409548-9.12508-4

Safani, J. & Matsuoka, T. (2013). Softgeotechnical zone determination using surface wave for geotechnical hazard mitigation. Procedia environmental sciences, 17, 354-360. https://doi.org/https://doi.org/10.1016/j.proenv.2013.02.048

Samadian, B. & Fakher, A. (2016). Proposing a framework to combine geological and geotechnical information for city planning in Sanandaj (Iran). Engineering geology, 209, 1-11. https://doi.org/https://doi.org/10.1016/j.enggeo.2016.04.033

SGM, Servicio Geológico Mexicano (2022). Litología. Escala 1:250,000 (ID: 6). [En línea]. Disponible en: https://www.sgm.gob.mx/GeoInfoMexGobMx/#. Fecha de consulta: 26 de junio de 2024.

SGM, Servicio Geológico Mexicano (2024). Zonificación sísmica de México. [En línea]. Disponible en: https://www.sgm.gob.mx/Sismotectonica/. Fecha de consulta: 27 de junio de 2024.

USGS, United States Geological Survey (2019). Landsat 8 (L8). Data Users Handbook. [En línea]. Disponible en: https://www.usgs.gov/media/files/landsat-8-data-users-handbook. Fecha de consulta: 25 de junio de 2024.

Wan-Mohamad, W. N. S. & Abdul-Ghani, A. N. (2011). The use of geographic information system for geotechnical data processing and presentation. Procedia engineering, 20, 397-406. https://doi.org/https://doi.org/10.1016/j.proeng.2011.11.182

Zhou, Y., Wu, T., & Wang, Y. (2022). Urban expansion simulation and development-oriented zoning of rapidly urbanising areas: A case study of Hangzhou. Science of the total environment, 807, 150813. https://doi.org/https://doi.org/10.1016/j.scitotenv.2021.150813.

Published

2024-07-16

How to Cite

Rolón-Aguilar, J. C. ., Salmerón-Gallardo, Y. A., & Vargas-Castilleja, R. del C. (2024). Subsoil zoning in southern Tamaulipas. CienciaUAT, 19(1), 06–14. https://doi.org/10.29059/cienciauat.v19i1.1899

Issue

Section

Physical, Mathematics and Earth Sciences

Most read articles by the same author(s)