Forthcoming

Development of QSAR models using neural networks for the estimation of potential a-glucosidase inhibitors from phenolics found in food matrices

Authors

  • Jesús Jaime Rochín-Medina Tecnológico Nacional de México-Instituto Tecnológico de Culiacán, Laboratorio de Microbiología Molecular y Bioactivos, calle Juan de Dios Bátiz 310 pte., colonia Guadalupe, Culiacán, Sinaloa, México, C. P. 80220. https://orcid.org/0000-0003-4731-2792
  • Hilda Karina Ramírez-Medina Tecnológico Nacional de México-Instituto Tecnológico de Culiacán, Laboratorio de Microbiología Molecular y Bioactivos, calle Juan de Dios Bátiz 310 pte., colonia Guadalupe, Culiacán, Sinaloa, México, C. P. 80220. https://orcid.org/0000-0003-0138-992X
  • Luis Enrique Barreto-Salazar Tecnológico Nacional de México-Instituto Tecnológico de Culiacán, Laboratorio de Microbiología Molecular y Bioactivos, calle Juan de Dios Bátiz 310 pte., colonia Guadalupe, Culiacán, Sinaloa, México, C. P. 80220. https://orcid.org/0000-0002-2435-0828
  • Ángel Ismael Carrillo-Mendivil Tecnológico Nacional de México-Instituto Tecnológico de Culiacán, Laboratorio de Microbiología Molecular y Bioactivos, calle Juan de Dios Bátiz 310 pte., colonia Guadalupe, Culiacán, Sinaloa, México, C. P. 80220.

DOI:

https://doi.org/10.29059/cienciauat.v20i1.2041

Keywords:

neural network, predictive model, molecular docking, phenolic compounds, enzyme inhibition

Abstract

a-Glucosidase is a key enzyme in carbohydrate digestion, and its inhibition represents a therapeutic strategy for the management of type 2 diabetes. The aim of this study was to develop a QSAR model using an artificial neural network (ANN) combined with molecular docking to estimate the inhibitory activity of a-glucosidase by phenolic compounds found in food matrices (PC-FM). The ANN was trained to predict pIC50 values using different configurations of hidden-layer neurons. The best estimation of pIC50 was achieved using an RNA design with 7 neurons in the occult layer and two molecular descriptors (SpMin7_Bhm, AATSC5s). Molecular docking was performed between a-glucosidase (isomaltase) and phenolic compounds that showed predicted pIC50 values equal to or higher than acarbose (n = 17). According to the model, naringin and quercetin 3,4'-O-diglucoside exhibited the lowest predicted pIC50 values (−1.96) and the highest binding affinities (−10.6 kcal/mol and −10.4 kcal/mol, respectively), outperforming the reference compound acarbose (pIC50 = −2.00; binding affinity = −9.8 kcal/mol). The integration of ANN-based QSAR modeling and molecular docking provides an efficient tool for screening the inhibitory potential of phenolic compounds against a-glucosidase enzyme.

Author Biographies

Jesús Jaime Rochín-Medina, Tecnológico Nacional de México-Instituto Tecnológico de Culiacán, Laboratorio de Microbiología Molecular y Bioactivos, calle Juan de Dios Bátiz 310 pte., colonia Guadalupe, Culiacán, Sinaloa, México, C. P. 80220.

Research Professor (División de Estudios de Posgrado e Investigación), SNII 1.

Hilda Karina Ramírez-Medina, Tecnológico Nacional de México-Instituto Tecnológico de Culiacán, Laboratorio de Microbiología Molecular y Bioactivos, calle Juan de Dios Bátiz 310 pte., colonia Guadalupe, Culiacán, Sinaloa, México, C. P. 80220.

Research Professor (División de Estudios de Posgrado e Investigación), SNII 1.

References

Alongi, M., Frías-Celayeta, J. M., Vriz, R., Kinsella, G. K., Rulikowska, A., & Anese, M. (2021). In vitro digestion nullified the differences triggered by roasting in phenolic composition and a-glucosidase inhibitory capacity of coffee. Food Chemistry, 342, 128289. https://doi.org/10.1016/j.foodchem.2020.128289

Burden, F. R. (1989). Molecular identification number for substructure searches. Journal of Chemical Information and Computer Sciences, 29(3), 225-227. https://doi.org/10.1021/ci00063a011

Chapman, J., Truong, V. K., & Cozzolino, D. (2022). Artificial intelligence applied to healthcare and biotechnology. In D. Barh (Ed.), Biotechnology in Healthcare: Technologies and Innovations (pp. 249-257). Elsevier. https://doi.org/10.1016/B978-0-323-89837-9.00001-2

Chen, J. G., Wu, S. F., Zhang, Q. F., Yin, Z. P., & Zhang, L. (2020). a-Glucosidase inhibitory effect of anthocyanins from Cinnamomum camphora fruit: Inhibition kinetics and mechanistic insights through in vitro and in silico studies. International Journal of Biological Macromolecules, 143, 696-703. https://doi.org/10.1016/j.ijbiomac.2019.09.091

Cherkasov, A., Muratov, E. N., Fourches, D., Varnek, A., Baskin, I. I., Cronin, M., Dearden, J., Gramatica, P., Martin, Y. C., Todeschini, R., Consonni, V., Kuz’Min, V. E., Cramer, R., Benigni, R., Yang, C., Rathman, J., Terfloth, L., Gasteiger, J., Richard, A., & Tropsha, A. (2014). QSAR modeling: Where have you been? Where are you going to? Journal of Medicinal Chemistry, 57(12), 4977-5010. https://doi.org/10.1021/jm4004285

Daoui, O., Mkhayar, K., Elkhattabi, S., Chtita, S., Zgou, H., & Elkhalabi, R. (2022). Design of novel carbocycle-fused quinoline derivatives as potential inhibitors of lymphoblastic leukemia cell line MOLT-3 using 2D-QSAR and ADME-Tox studies. RHAZES: Green and Applied Chemistry, 14(0), 36-61. https://doi.org/10.48419/IMIST.PRSM/RHAZES-V14.31152

Doungwichitrkul, T., Damsud, T., & Phuwapraisirisan, P. (2024). a-Glucosidase Inhibitors from Cold-Pressed Black Sesame (Sesamum indicum) Meal: Characterization of New Furofuran Lignans, Kinetic Study, and In Vitro Gastrointestinal Digestion. Journal of Agricultural and Food Chemistry, 72(2), 1044-1054. https://doi.org/10.1021/acs.jafc.3c04159

El-fadili, M., Er-rajy, M., Imtara, H., Noman, O. M., Mothana, R. A., Abdullah, S., Zerougui, S., & Elhallaoui, M. (2023). QSAR, ADME-Tox, molecular docking and molecular dynamics simulations of novel selective glycine transporter type 1 inhibitors with memory enhancing properties. Heliyon, 9(2), e13706. https://doi.org/10.1016/j.heliyon.2023.e13706

Emonts, J. & Buyel, J. F. (2023). An overview of descriptors to capture protein properties – Tools and perspectives in the context of QSAR modeling. Computational and Structural Biotechnology Journal, 21, 3234–3247. https://doi.org/10.1016/J.CSBJ.2023.05.022

European Bioinformatics Institute (2025). Base de datos ChEMBL. [En línea]. Disponible en: https://www.ebi.ac.uk/chembl/. Fecha de consulta: 15 de marzo de 2025.

Gálvez, J., Garcia, R., Salabert, M. T., & Soler, R. (2002). Charge Indexes. New Topological Descriptors. Journal of Chemical Information and Computer Sciences, 34(3), 520–525. https://doi.org/10.1021/CI00019A008

Guan, L., Long, H., Ren, F., Li, Y., & Zhang, H. (2022). A Structure—Activity Relationship Study of the Inhibition of a-Amylase by Benzoic Acid and Its Derivatives. Nutrients, 14(9), 1931. https://doi.org/10.3390/NU14091931/S1

Gupta, R., Srivastava, D., Sahu, M., Tiwari, S., Ambasta, R. K., & Kumar, P. (2021). Artificial intelligence to deep learning: machine intelligence approach for drug discovery. Molecular Diversity, 25(3), 13151360. https://doi.org/10.1007/s11030-021-10217-3

Hossain, U., Das, A. K., Ghosh, S., & Sil, P. C. (2020). An overview on the role of bioactive a-glucosidase inhibitors in ameliorating diabetic complications. Food and Chemical Toxicology, 145, 111738. https://doi.org/10.1016/j.fct.2020.111738

Hung, C. & Gini, G. (2021). QSAR modeling without descriptors using graph convolutional neural networks: the case of mutagenicity prediction. Molecular Diversity, 25(3), 1283-1299. https://doi.org/10.1007/s11030-021-10250-2

Javaid, M., Haleem, A., Singh, R. P., & Suman, R. (2022). Artificial Intelligence Applications for Industry 4.0: A Literature-Based Study. Journal of Industrial Integration and Management, 7(1), 83-111. https://doi.org/10.1142/S2424862221300040

Manach, C., Scalbert, A., Morand, C., Rémésy, C., & Jiménez, L. (2004). Polyphenols: food sources and bioavailability. The American Journal of Clinical Nutrition, 79(5), 727-747. https://doi.org/10.1093/AJCN/79.5.727

Mehmood, R., Mughal, E. U., Elkaeed, E. B., Obaid, R. J., Nazir, Y., Al-Ghulikah, H. A., Al-Ghulikah, H., Naeem, N., Munirah M. Al-Rooqi, Ahmed, S. A., Wadood-Shah, A. S., & Sadiq, A. (2022). Synthesis of Novel 2,3-Dihydro-1,5-Benzothiazepines as a-Glucosidase Inhibitors: In Vitro, In Vivo, Kinetic, SAR, Molecular Docking, and QSAR Studies. ACS Omega, 7(34), 30215-30232. https://doi.org/10.1021/acsomega.2c03328

Minitab Support. (2023). Interpretar todos los estadísticos y gráficas para Correlación. Minitab. [En línea]. Disponible en: https://support.minitab.com/es-mx/minitab/help-and-how-to/statistics/basic-statistics/how-to/correlation/interpret-the-results/all-statistics-and-graphs/ Fecha de consulta: 16 de octubre de 2025.

National Library of Medicine (2025). PubChem. [En línea]. Disponible en: https://pubchem.ncbi.nlm.nih.gov. Fecha de consulta: 15 de marzo de 2025.

Neveu, V., Perez-Jiménez, J., Vos, F., Crespy, V., du-Chaffaut, L., Mennen, L., Knox, C., Eisner, R., Cruz, J., Wishart, D., & Scalbert, A. (2010). Phenol-Explorer: an online comprehensive database on polyphenol contents in foods. Database : The Journal of Biological Databases and Curation, 2010. https://doi.org/10.1093/DATABASE/BAP024

Nile, A., Gansukh, E., Park, G. S., Kim, D. H., & Nile, S. H. (2021). Novel insights on the multi-functional properties of flavonol glucosides from red onion (Allium cepa L) solid waste – In vitro and in silico approach. Food Chemistry, 335, 127650. https://doi.org/10.1016/J.FOODCHEM.2020.127650

Nirwan, S., Chahal, V., & Kakkar, R. (2022). A comparative study of different docking methodologies to assess the proteinligand interaction for the E. coli MurB enzyme. Journal of Biomolecular Structure & Dynamics, 40(21), 11229-11238. https://doi.org/10.1080/07391102.2021.1957019

Patra, J. C. & Chua, K. H. K. (2010). Neural network based drug design for diabetes mellitus using QSAR with 2D and 3D descriptors. The 2010 International Joint Conference on Neural Networks (IJCNN), 1-8. https://doi.org/10.1109/IJCNN.2010.5596935

Phenol-Explorer (2025). Base de datos sobre compuestos fenólicos en alimentos. [En línea]. Disponible en: http://phenol-explorer.eu/. Fecha de consulta: 16 de marzo de 2025.

Pinzi, L. & Rastelli, G. (2019). Molecular Docking: Shifting Paradigms in Drug Discovery. International Journal of Molecular Sciences, 20(18), 4331. https://doi.org/10.3390/ijms20184331

Poovitha, S., & Parani, M. (2016). In vitro and in vivo a-amylase and a-glucosidase inhibiting activities of the protein extracts from two varieties of bitter gourd (Momordica charantia L.). BMC Complementary and Alternative Medicine, 16(S1), 185. https://doi.org/10.1186/s12906-016-1085-1

RCSB Protein Data Bank (2025). Banco de Datos de Proteínas RCSB. [En línea]. Disponible en: https://www.rcsb.org. Fecha de consulta: 15 de marzo de 2025.

Rosenfeld, R., Vajda, S., & DeLisi, C. (1995). Flexible docking and design. Annual Review of Biophysics and Biomolecular Structure, 24(1), 677-700.https://doi.org/10.1146/ANNUREV.BB.24.060195.003333/CITE/REFWORKS

Rothwell, J. A., Perez-Jimenez, J., Neveu, V., Medina-Remón, A., M’Hiri, N., García-Lobato, P., Manach, C., Knox, C., Eisner, R., Wishart, D. S., & Scalbert, A. (2013). Phenol-Explorer 3.0: a major update of the Phenol-Explorer database to incorporate data on the effects of food processing on polyphenol content. Database, 2013. https://doi.org/10.1093/DATABASE/BAT070

Rusinko, A., Rezaei, M., Friedrich, L., Buchstaller, H. P., Kuhn, D., & Ghogare, A. (2024). AIDDISON: Empowering Drug Discovery with AI/ML and CADD Tools in a Secure, Web-Based SaaS Platform. Journal of Chemical Information and Modeling, 64(1), 3-8. https://doi.org/10.1021/acs.jcim.3c01016

Sahnoun, M., Trabelsi, S., & Bejar, S. (2017). Citrus flavonoids collectively dominate the a-amylase and a-glucosidase inhibitions. Biologia (Poland), 72(7), 764-773. https://doi.org/10.1515/biolog-2017-0091

Sim, L., Willemsma, C., Mohan, S., Naim, H. Y., Pinto, B. M., & Rose, D. R. (2010). Structural Basis for Substrate Selectivity in Human Maltase-Glucoamylase and Sucrase-Isomaltase N-terminal Domains. The Journal of Biological Chemistry, 285(23), 17763. https://doi.org/10.1074/JBC.M109.078980

Salazar-López, N. J., López-Rodríguez, C. V., Hernández-Montoya, D. A., & Campos-Vega, R. (2020). Health Benefits of Spent Coffee Grounds. In Food Wastes and By-products, 327-351). https://doi.org/10.1002/9781119534167.ch11

Simeon, S. & Jongkon, N. (2019). Construction of Quantitative Structure Activity Relationship (QSAR) Models to Predict Potency of Structurally Diversed Janus Kinase 2 Inhibitors. Molecules 24(23), 4393 https://doi.org/10.3390/MOLECULES24234393

Singh, P., Kumar, R., Sharma, B. K., & Prabhakar, Y. S. (2009). Topological descriptors in modeling malonyl coenzyme A decarboxylase inhibitory activity: N-Alkyl-N-(1,1,1,3,3,3-hexafluoro-2-hydroxypro-pylphenyl) amide derivatives. Journal of Enzyme Inhibition and Medicinal Chemistry, 24(1), 77–85. https://doi.org/10.1080/14756360801915336

Şöhretoğlu, D., Renda, G., Arroo, R., Xiao, J., & Sari, S. (2023). Advances in the natural a-glucosidase inhibitors. EFood, 4(5). https://doi.org/10.1002/efd2.112

Taiwo, A. E., Okoji, A. I., Eloka-Eboka, A. C., & Musonge, P. (2022). The role of artificial neural networks in bioproduct development: a case of modeling and optimization studies. Current Trends and Advances in Computer-Aided Intelligent Environmental Data Engineering, 417-431. https://doi.org/10.1016/B978-0-323-85597-6.00007-0

Todeschini, R. & Consonni, V. (2009). Molecular Descriptors for Chemoinformatics: Volume I: Alphabetical Listing (Second edition). Wiley-VCH.

Tolmie, M., Bester, M. J., & Apostolides, Z. (2021). Inhibition of a-glucosidase and a-amylase by her-bal compounds for the treatment of type 2 diabetes: A validation of in silico reverse docking with in vitro enzyme assays. Journal of Diabetes, 13(10), 779-791. https://doi.org/10.1111/1753-0407.13163

Tropsha, A. (2010). Best Practices for QSAR Mo-del Development, Validation, and Exploitation. Molecular Informatics, 29(6-7), 476-488. https://doi.org/10.1002/MINF.201000061

Wang, Z., Li, S., Ge, S., & Lin, S. (2020). Review of Distribution, Extraction Methods, and Health Benefits of Bound Phenolics in Food Plants. Journal of Agricultural and Food Chemistry, 68(11), 3330-3343. https://doi.org/10.1021/acs.jafc.9b06574

Xiangju, Z., Yuqin, C., Zhongping, Y., Qi, L., Jianwei, Z., Daobang, T., Jiguang, C., Xiangju, Z., Yuqin, C., Zhongping, Y., Qi, L., Jianwei, Z., Daobang, T., & Jiguang, C. (2022). Inhibitory Effect of Naringin on a-Glucosidase and Its Mechanism. Science and Technology of Food Industry, 43(8), 157-164. https://doi.org/10.13386/J.ISSN1002-0306.2021080184

Xu, Y. (2022). Deep neural networks for QSAR. In A. Heifetz (Ed.), Artificial intelligence in drug design (pp. 233-260). Humana. https://doi.org/10.1007/978-1-0716-1787-8_10

Yamamoto, K., Miyake, H., Kusunoki, M., & Osaki, S. (2010). Crystal structures of isomaltase from Saccharomyces cerevisiae and in complex with its competitive inhibitor maltose. FEBS Journal, 277(20), 4205-4214. https://doi.org/10.1111/j.1742-4658.2010.07810.x

Yap, C. W. (2011). PaDEL-descriptor: An open source software to calculate molecular descriptors and fingerprints. Journal of Computational Chemistry, 32(7), 1466-1474. https://doi.org/10.1002/JCC.21

707

Yoshikawa, T., Mifune, Y., Inui, A., Nishimoto, H., Yamaura, K., Mukohara, S., Shinohara, I., & Kuroda, R. (2022). Quercetin treatment protects the Achilles tendons of rats from oxidative stress induced by hyperglycemia. BMC Musculoskeletal Disorders, 23(1), 563. https://doi.org/10.1186/s12891-02205513-4

Yue, L. M., Lee, J., Zheng, L., Park, Y. D., Ye, Z. M., & Yang, J. M. (2017). Computational prediction integrating the inhibition kinetics of gallotannin on a-glucosidase. International Journal of Biological Macromolecules, 103, 829-838. https://doi.org/10.1016/j.ijbiomac.2017.05.106

Zdrazil, B., Felix, E., Hunter, F., Manners, E. J., Blackshaw, J., Corbett, S., de-Veij, M., Ioannidis, H., Lopez, D. M., Mosquera, J. F., Magarinos, M. P., Bosc, N., Arcila, R., Kizilören, T., Gaulton, A., Bento, A. P., Adasme, M. F., Monecke, P., Landrum, G. A., & Leach, A. R. (2024). The ChEMBL Database in 2023: a drug discovery platform spanning multiple bioactivity data types and time periods. Nucleic Acids Research, 52(D1), D1180-D1192. https://doi.org/10.1093/NAR/GKAD1004

Zerroug, E., Belaidi, S., & Chtita, S. (2021). Artificial neural network-based quantitative structure–activity relationships model and molecular docking for virtual screening of novel potent acetylcholines-terase inhibitors. Journal of the Chinese Chemical Society, 68(8), 1379-1399. https://doi.org/10.1002/jccs.202000457

Published

2025-11-19

How to Cite

Rochín-Medina, J. J., Ramírez-Medina, H. K., Barreto-Salazar, L. E., & Carrillo-Mendivil, Ángel I. (2025). Development of QSAR models using neural networks for the estimation of potential a-glucosidase inhibitors from phenolics found in food matrices. CienciaUAT, 20(1), 163–182. https://doi.org/10.29059/cienciauat.v20i1.2041
Received 2025-07-07
Accepted 2025-11-13
Published 2025-11-19

Similar Articles

1 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.