Methods for presumtive detection of Huanglongbing (HLB) in Citrus
DOI:
https://doi.org/10.29059/cienciauat.v11i2.783Keywords:
detection, Huanglongbing, HLB.Abstract
Huanglongbing (HLB) is considered worldwide as the most threatening disease for citrus and has impacted mainly in Asia, South Africa and Brazil. Until now, no effective treatment for the detection of this disease (is available, which can help diminish its spread and the consequent removal of infected trees). The most reliable identification HLB test method to date is the polymerase chain reaction (qrt-PCR), which is costly and time-consuming. This is the first review of the different existing or developing methods for HLB detection and identification, classified into analysis and patternrecognition in images, spectrophotometric, chromatographic and molecular through the insect vector. Some of these methods represent innovative alternatives with different levels of efficiency in time, cost and reliability in detecting diseased trees or in managing the disease, compared to those traditionally used.References
Aksenov, A. A., Pasamontes, A., Peirano, D. J., Zhao, W.,Dandekar, A. M., Fiehn, O., …, and Davis, C. E. (2014). Detection of Huanglongbing Disease Using Differential Mobility Spectrometry. Analytical Chemistry. 86(5): 2481-2488.
Albrecht, U. and Bowman, K. D. (2008). Gene expression in Citrus sinensis (L.) osbeck following infection with the bacterial pathogen Candidatus Liberibacter asiaticus causing Huanglongbing in Florida. Plant Science. 175(3): 291-306.
Amro, I., Mateos, J., Vega, M., Molina, R., and Katsaggelos, A. K. (2011). A survey of classical methods and new trends in pansharpening of multispectral images. EURASIP Journal on Advances in Signal Processing. 2011(1): 1.
Bové, J. M. (2006). Huanglongbing: A destructive, newly emerging, century-old disease of citrus. Journal of plant pathology. 88: 7-37.
Choi, D., Lee, W. S., and Ehsani, R. (2013). Detecting and counting citrus fruit on the ground using machine vision, in ASABE. [En línea]. Disponible en: http://abe.ufl.edu/precag/pdf/2013DaeunASABE.pdf. Fecha de consulta: 4 de noviembre de 2015.
Deng, X. L., Li, Z., Deng, X. L., and Hong, T. S. (2014). Citrus disease recognition based on weighted scalable vocabulary tree. Precision Agriculture. 15(3): 321-330.
Engel, T. and Reid, P. (2006). Química física. Madrid, España: Pearson Educación S.A. 1090 Pp.
Etxeberria, E., Gonzalez, P., Achor, D., and Albrigo, G. (2009). Anatomical distribution of abnormally high levels of starch in HLB-affected Valencia orange trees. Physiological and Molecular Plant Pathology. 74(1): 76-83.
Futch, S., Weingarten, S., and Irey, M. (2009). Determining HLB infection levels using multiple survey methods in Florida citrus. In Proceedings Florida State Horticultural Society. 122: 152-157.
Garcia-Ruiz, F., Sankaran, S., Maja, J. M., Lee, W. S., Rasmussen, J., and Ehsani, R. (2013). Comparison of two aerial imaging platforms for identification of Huanglongbing-infected citrus trees. Computers and Electronics in Agriculture. 91: 106-115.
Gonzalez, P., Reyes-De-Corcuera, J., and Etxeberria, E. (2012). Characterization of leaf starch from HLB-affected and unaffected-girdled citrus trees. Physiological and molecular plant pathology. 79: 71-78.
Gonzalez, R. and Woods, R. (2008). Digital Image Processing. Estados Unidos: Pearson/Prentice Hall. 976 Pp.
Halbert, S. E. (2005). The discovery of huanglongbing in Florida, in Proceedings of the 2nd International Citrus Canker and Huanglongbing Research Work-shop. [En línea]. Disponible en: http://freshfromflorida.s3.amazonaws.com/2nd_International_Canker_Huanglongbing_Research_Workshop_2005.pdf. Fecha de consulta: 4 de noviembre de 2015.
Hawkins, S. A., Park, B., Poole, G. H., Gottwald, T., Windham, W. R., and Lawrence, K. C. (2010). Detection of Citrus huanglongbing by Fourier transform infrared–attenuated total reflection spectroscopy. Applied spectroscopy. 64(1): 100-103.
Keremane, M. L., Ramadugu, C., Rodriguez, E., Kubota,R., Shibata, S., Hall, D. G., …, and Lee, R. F. (2015). A rapid field detection system for citrus huanglongbing associated “Candidatus Liberibacter asiaticus” from the psyllid vector. Diaphorina citri Kuwayama and its implications in disease management. Crop Protection. 68: 41-48.
Kim, D. G., Burks, T. F., Schumann, A. W., Zekri, M., Zhao, X., and Qin, J. (2009). Detection of citrus greening using microscopic imaging, in Agricultural Engineering International: the CIGR Ejournal. [En línea]. Disponible en: http://www.cigrjournal.org/index.php/Ejounral/article/view/1194/1226. Fecha de consulta: 4 de noviembre de 2015.
Kumar, A., Lee, W., Ehsani, R., Albrigo, L., Yang, C., and Mangan, R. (2010). Citrus greening disease detection using airborne multispectral and hyperspectral imaging, in International Conference on Precision Agriculture. [En línea]. Disponible en: http://128.227.177.113/pa/Publications/Kumar_Lee_Ehsani_Albrigo_Yang_Mangan_2010.pdf. Fecha de consulta: 4 de noviembre de 2015.
Li, X., Lee, W. S., Li, M., Ehsani, R., Mishra, A. R., Yang, C., and Mangan, R. L. (2012). Spectral Difference Analysis and Airborne Imaging Classification for Citrus Greening Infected Trees. Computers and Electronics in Agriculture. 83(1): 32-46.
Li, H., Lee, W. S., Wang, K., Ehsani, R., and Yang, C. (2014). Extended spectral angle mapping (ESAM) for citrus greening disease detection using airborne hyperspectral imaging. Precision Agriculture. 15(2): 162-183.
Li, X., Lee, W. S., Li, M., Ehsani, R., Mishra, A. R., Yang, C., and Mangan, R. L. (2015). Feasibility study on Huanglongbing (citrus greening) detection based on WorldView-2 satellite imagery. Biosystems Engineering. 132: 28-38.
Mishra, A., Ehsani, R., Albrigo, G., and Lee, W. S. (2007). Spectral characteristics of citrus greening (Huanglongbing), in Proceedings 2007 ASABE Annual Meeting. [En línea]. Disponible en: http://elibrary.asabe.org/abstractasp?aid=24163. Fecha de consulta: 4 de noviembre de 2015.
Mishra, A., Karimi, D., Ehsani, R., and Albrigo, L. G. (2011). Evaluation of an active optical sensor for detection of Huanglongbing (HLB) disease. Biosystems Engineering. 110(3): 302-309.
Mishra, A. R., Karimi, D., Ehsani, R., and Lee, W. S. (2012). Identification of citrus greening (HLB) using a VIS-NIR spectroscopy technique. Transactions of the ASABE. 55(2): 711-720.
Pereira, F. M. V., Milori, D. M. B. P., Pereira-Filho, E. R., Venâncio, A. L., Russo, M. D. S. T., do Brasil-Cardinali, M. C., …, and Freitas-Astúa, J. (2011). Laser-induced fluorescence imaging method to monitor citrus greening disease. Computers and electronics in agriculture. 79(1): 90-93.
Pourreza, A., Lee, W., Raveh, E., Ehsani, R., and Etxeberria, E. (2014). Citrus Huanglongbing detection using narrowband imaging and polarized illumination. Transactions of the ASABE. 57(1): 259-272.
Pourreza, A., Lee, W. S., Ehsani, R., Schueller, J. K., and Raveh, E. (2015). An optimum method for real-time in-field detection of Huanglongbing disease using a vision sensor. Computers and Electronics in Agriculture. 110: 221-232.
Robles-González, M. M., Velázquez-Monreal, J. J., Manzanilla-Ramirez, M. Á., Orozco-Santos, M., Medina-Urrutia, V. M., López-Arroyo, J. I., and Flores-Virgen, R. (2013). Síntomas del Huanglongbing (HLB) en árboles de limón mexicano [Citrus aurantifolia (Christm) Swingle] y su dispersión en el estado de Colima, México. Revista Chapingo. Serie horticultura. 19(1): 15-31.
Sankaran, S., Ehsani, R., and Etxeberria, E. (2010a). Mid-infrared spectroscopy for detection of Huanglongbing (greening) in citrus leaves. Talanta. 83(2): 574-581.
Sankaran, S., Mishra, A., Ehsani, R., and Davis, C. (2010b). A review of advanced techniques for detecting plant diseases. Computers and Electronics in Agriculture. 72(1): 1-13.
Sankaran, S. and Ehsani, R. (2011). Visible-near infrared spectroscopy based citrus greening detection: Evaluation of spectral feature extractiontechniques. Crop Protection. 30(11): 1508-1513.
Sankaran, S., Mishra, A., Maja, J. M., and Ehsani, R. (2011).
Visible-near infrared spectroscopy for detection of Huanglongbing in citrus orchards. Computers and Electronics in Agriculture. 77(2): 127-134.
Sankaran, S. and Ehsani, R. (2013). Detection of Huanglongbing-Infected Citrus Leaves Using Statistical Models with a Fluorescence Sensor. Applied spectroscopy. 67(4): 463-469.
Sankaran, S., Maja, J. M., Buchanon, S., and Ehsani, R. (2013). Huanglongbing (Citrus Greening) Detection Using Visible, Near Infrared and Thermal Imaging Techniques. Sensors. 13(2): 2117-2130.
Santivañez, T., Mora-Aguilera, G., Díaz-Padilla, G., López-Arrollo, J. I. y Vernal-Hurtado, P. (2013). CITRUS. Marco estratégico para la gestión regional del Huanglongbing en América Latina y el Caribe. Italia: Organización de las Naciones Unidas para la Alimentación y la Agricultura (FAO). 60 Pp.
SENASICA, Servicio Nacional de Sanidad, Inocuidad y Calidad Agroalimentaria (2015a). Situación fitosanitaria actual de HLB en México. SENASICA, en Secretaría de Agricultura Ganadería y Desarrollo Rural, Pesca y Alimentación. [En línea]. Disponible en: http://www.senasica.gob.mx/?id=4608. Fecha de consulta: 25 de noviembre de 2015.
SENASICA, Servicio Nacional de Sanidad, Inocuidad y Calidad Agroalimentaria (2015b). Mapa de distribución de HLB en México. SENASICA, en Secretaría de Agricultura Ganadería y Desarrollo Rural, Pesca y Alimentación. [En línea]. Disponible en: http://www.sinavef.gob.mx/MDF/. Fecha de consulta: 25 de noviembre de 2015.
Texeira, D. D. C., Ayres, J., Kitajima, E. W., Danet, L., Jagoueix-Eveillard, S., Saillard, C., and Bové, J. M. (2005). First report of a Huanglongbing-like disease of citrus in Sao Paulo State, Brazil and association of a new Liberibacter species, “Candidatus Liberibacter americanus”, with the disease. Plant Disease. 89(1): 107.
Wetterich, C. B., Kumar, R., Sankaran, S., Belasque Junior, J., Ehsani, R., and Marcassa, L. G. (2012). A comparative study on application of computer vision and fluorescence imaging spectroscopy for detection of Huanglongbing citrus disease in the USA and Brazil, in Journal of Spectroscopy. [En línea]. Disponible en: http://www.hindawi.com/journals/jspec/2013/841738/. Fecha de consulta: 4 de noviembre de 2015.