Efecto antioxidante de la miel de abeja sobre la carne de conejo almacenada en refrigeración

Autores/as

  • Daniel Salvador López-Velasco Universidad Autónoma Chapingo, Departamento de Zootecnia, km 38.5, carretera México-Texcoco, Texcoco, Estado de México, México, C. P. 56230.
  • Eliseo Sosa-Montes Universidad Autónoma Chapingo, Departamento de Zootecnia, km 38.5, carretera México-Texcoco, Texcoco, Estado de México, México, C. P. 56230.
  • Arturo Pro-Martínez Colegio de Postgraduados, Recursos Genéticos y Productividad-Ganadería, Campus Montecillo, Texcoco, Estado de México, México.
  • Fernando González-Cerón Universidad Autónoma Chapingo, Departamento de Zootecnia, km 38.5, carretera México-Texcoco, Texcoco, Estado de México, México, C. P. 56230.
  • Artemio Jovanny Vargas-Galicia Colegio de Postgraduados, Recursos Genéticos y Productividad-Ganadería, Campus Montecillo, Texcoco, Estado de México, México.

DOI:

https://doi.org/10.29059/cienciauat.v15i2.1395

Palabras clave:

oxidación de lípidos, refrigeración, lomo de conejo

Resumen

La oxidación de lípidos deteriora los alimentos, por lo que se usan antioxidantes sintéticos para disminuirla, sin embargo, estos compuestos en exceso poseen efectos carcinogénicos. Algunas plantas como el orégano, así como la miel de abeja, contienen antioxidantes naturales que no dañan la salud. Hasta el momento no se han encontrado registros del uso de la miel de abeja para disminuir la oxidación lipídica en carne de conejos. El objetivo de este estudio fue evaluar el efecto de la miel de abeja como antioxidante en la carne cruda de lomo de conejo almacenada en refrigeración a 4 °C. Se evaluó la actividad antioxidante (AA) de tres tipos de miel: oscura, ámbar y clara, para mezclarla con la carne de conejo. Se seleccionó la miel oscura por su mayor efecto antioxidante. Se prepararon 64 muestras de 100 g de carne cruda, 32 se mez-claron con 2 g de miel oscura y las otras 32 se dejaron sin miel (control). Las muestras se almacenaron a 4°C y se evaluó la AA y la concentración de malondialdehído (MDA) a los 0 d, 3 d, 6 d y 9 d de almacenamiento. La AA disminuyó y la concentración de MDA aumentó (P < 0.05) con el tiempo de refrigeración (cambios que indican deterioro de la carne). A los 3 d y 6 d, las muestras de carne cruda con miel exhibieron mayor AA (P < 0.05), y a los 6 d, menores valores de MDA (P < 0.05) comparadas con las muestras control (indicando que no hubo deterioro de la carne). La miel oscura de abeja contiene altas concentraciones de antioxidantes naturales que protegen a la carne cruda molida de lomo de conejo contra el daño oxidativo que puede presentarse durante la refrigeración, por lo que se recomienda su uso para este fin.

Citas

Agustini, T. W., Suzuki, T., Hagiwara, T., Ishizaki, S., Tanaka, M., and Takai, R. (2001). Change of K value and water state of yellowfin tuna Thunnus albacares meat stored in a wide temperature range (20°C to - 84°C). Fisheries Science. 67(2): 306-313.

Alasnier, C., David-Briand, E., and Gandemer, G. (2000). Lipolysis in muscles during refrigerated storage as related to the metabolic type of the fibres in the rabbit. Meat Science. 54(2): 127-134.

Alvarez-Suarez, J. M., Gasparrini, M., Forbes-Hernández, T. Y., Mazzoni, L., and Giampieri, F. (2014). The composition and biological activity of honey: a focus on Manuka honey. Foods. 3(3): 420-432.

Antony, S., Rieck, J. R., Acton, J. C., Han, I. Y., Halpin, E. L., and Dawson, P. L. (2006). Effect of dry hon-ey on the shelf life of packaged turkey slices. Poultry Science. 85(10): 1811-1820.

Avila-Ramos, F., Pro-Martínez, A., Sosa-Montes, E., Cuca-García, J. M., Becerril-Pérez, C., Figueroa-Velasco, J. L., …, and Narciso-Gaytán, C. (2013). Dietary supplemented and meat-added antioxidants effect on the lipid oxidative stability of refrigerated and frozen cooked chicken meat. Poultry Science. 92(1): 243-249.

Bobko, M., Kročko, M., Haščík, P., Tkáčová, J., Bučko, O., Bobková, A., …, and Pavelkova, A. (2019). Pa-rameters of quality raw cooked meat product. Journal of Microbiology, Biotechnology and Food Sciences. 9: 366-369.

Brand-Williams, W., Cuvelier, M. E., and Berset, C. (1995). Use of a free radical method to evaluate antiox-idant activity. Lebensmittel-Wissenschaft and Technologie. 28(1): 25-30.

Can, Z., Yildiz, O., Sahin, H., Akyuz, T. E., Silici, S., and Kolayli, S. (2015). An investigation of Turkish honeys: Their physico-chemical properties, antioxidant capacities and phenolic profiles. Food Chemistry. 180: 133-141.

Carvalho, R., Shimokomaki, M., and Estévez M. (2017). Poultry meat color and oxidation. In M. Petraci and C. Berri (Eds.), Poultry Quality Evaluation (pp. 133-157). Oxford: Elsevier, UK.

Cianciosi, D., Forbes-Hernández, T. Y., Afrin, S., Gasparrini, M., Reboredo-Rodríguez, P., Manna, P. P., …, and Battino, M. (2018). Phenolic compounds in honey and their associated health benefits: A review. Molecules. 23(9): 2322.

Dżugan, M., Tomczyk, M., Sowa, P., and Grabek-Lejko, D. (2018). Antioxidant activity as biomarker of honey variety. Molecules. 23(8): 2069.

El-Gogary, M. R., El-Said, E. A., and Mansour, A. M. (2018). Physiological and immunological effects of rosemary essential oil in growing rabbit diets. Journal of Agricultural Science. 10(7): 485-491.

Galano, A. (2015). Free radicals induced oxidative stress at a molecular level: The current status, challenges and perspectives of computational chemistry based protocols. Journal of the Mexican Chemical Society. 59(4): 231-262.

Ghorbani, A. and Esmaeilizadeh, M. (2017). Pharmacological properties of Salvia officinalis and its compo-nents. Journal of Traditional and Complementary Medicine. 7(4): 433-440.

Gutiérrez-Grijalva, E. P., Picos-Salas, M. A., Leyva-López, N., Criollo-Mendoza, M. S., Vazquez-Olivo, G., and Basilio-Heredia, J. (2018). Flavonoids and phenolic acids from oregano: Occurrence, biological activity and health benefits. Plants. 7(1): 2.

James, S. J. and James, C. (2014). Chilling and Freezing of Foods. In S. Clark, S. Jung, and B. Lamsal (Eds), Food Processing: Principles and Applications (pp. 79-105). Oxford: John Wiley & Sons, UK.

Johnston, J. E., Sepe, H. A., Miano, C. L., Brannan, R. G., and Alderton, A. L. (2005). Honey inhibits lipid oxidation in ready-to-eat ground beef patties. Meat Science. 70(4): 627-631.

Kumar, Y., Narayan, Y. D., Ahmad, T., and Narsaiah, K. (2015). Recent trends in the use of natural antioxi-dants for meat and meat products. Comprehensive Reviews in Food Science and Food Safety. 14(6): 796-812.

Nagai, T., Inoue, R., Kanamori, N., Suzuki, N., and Nagashima, T. (2006). Characterization of honey from different floral sources. Its functional properties and effects of honey species on storage of meat. Food Chem-istry. 97(2): 256-262.

Nagyova, A., Krajcovicova, K. M., Horska, A., Smolkova, B., Blazicek, P., Raslova, K., …, and Dusinska, M. (2004). Lipid peroxidation in men after dietary supplementation with a mixture of antioxidant nutrients. Bratislavské Lekárske Listy – Bratislava Medical Journal. 105(7/8): 277-280.

Nieto, G., Ros, G., and Castillo, J. (2018). Antioxidant and antimicrobial properties of rosemary (Rosmarinus officinalis, L.): A review. Medicines. 5(3): 98.

Nobuyuki, I. and Masao, H. (1989). Antioxidantscarcinogenic and chemopreventive properties. Advances in Cancer Research. 53: 247-302.

NOM-033-SAG/ZOO-2014 (2014). Métodos para dar muerte a los animales domésticos y silvestres. Secreta-ría de Agricultura y Recursos Hidráulicos, en Norma Oficial Mexicana. [En línea]. Disponible en: http://www.dof.gob.mx/nota_detalle.php?codigo=5405210&fecha=26/08/2015&print=true. Fecha de consulta: 25 de noviembre de 2019.

Pichichero, E., Canuti, L., and Canini, A. (2009). Characterization of the phenolic and flavonoid fractions and antioxidant power of Italian honeys of different botanical origin. Journal of the Science of Food and Agriculture. 89(4): 609-616.

Possamai, A. P. S., Alcalde, C. R., Feihrmann, A. C., Possamai, A. C. S. Rossi, R. M., Lala, B., …, and Macedo F. A. (2018). Shelf life of meat from Boer-Saanen goatsfed diets supplemented with vitamin E. Meat Science. 139: 107-112.

Rabaa, A. M., Mashair, A. S., and Elgasim, A. E.(2013). Effect of bee honey in safety and storability of beef sausage. Pakistan Journal of Nutrition. 12(6): 560-566.

Sampaio, G. R., Saldanha, T., Soares, R. A. M., and Torres, E. A. F. S. (2012). Effect of natural antioxidant combinations on lipid oxidation in cooked chicken meat during refrigerated storage. Food Chemistry. 135(3): 1383-1390.

Shahidi, F. and Udaya, N. W. (2007). Methods for measuring oxidative rancidity in fats and oils. In C. C. Akoh and D. B. Min (Eds.), Food lipids: Chemistry, Nutrition and Biotechnology (pp. 387-403). London: Taylor and Francis Group, UK.

Shasha, D., Magogo, C., and Dzomba, P. (2014). Reversed phase HPLC-UV quantitation of BHA, BHT and TBHQ in food items sold in Bindura supermarkets, Zimbabwe. International Research Journal of Pure and Applied Chemistry. 4: 578-584.

Shin, D., Yang, H. S., Min, B. R., Gaytán, C. N., Sánchez, P. M. X., and Ruiz, F. C. (2011). Evaluation of antioxidant effects of vitamins C and E alone and in combination with sorghum bran in a cooked and stored chicken sausage. Korean Journal of Food Science. Animal Resources. 31(5): 693-700.

Škrovánková, S., Snopek, L., Mlček, J., and Volaříková, E. (2019). Bioactive compounds evaluation in dif-ferent types of Czech and Slovak honeys. Potravinarstvo Slovak Journal of Food Sciences. 13(1): 94-99.

Soltani, M., Tabeidian, S. A., Ghalamkari, G., Adeljoo, A. H., Mohammadrezaei, M., and Fosoul, S. S. A. S. (2016). Effect of dietary extract and dried areal parts of Rosmarinus officinalis on performance, immune re-sponses and total serum antioxidant activity in broiler chicks. Asian Pacific Journal of Tropical Disease. 6(3): 218-222.

SPSS, Statistical Package for the Social Sciences (2011). Institute. SPSS-X. User’s Guide. Version 8, Chicago IL. USA.

Srećković, N. Z., Mihailović, V. B., and Katanić-Stanković, J. S. (2019). Physico-chemical, antioxidant and antimicrobial properties of three different types of honey from central Serbia. Kragujevac Journal of Science. (41): 53-68.

Tao, L. (2015). Oxidation of polyunsaturated fatty acids and its impact on food quality and human health. Advances in Food Technology and Nutritional Sciences. 1(6): 135-142.

Velasco, V. and Williams, P. (2011). Improving meat quality through natural antioxidants. Chilean Journal of Animal Research. 71(2): 313-322.

Velázquez, R. S. R., Sosa, M. E., Ramírez, G. M. E., Pro, M. A., Suarez, L. R., Avila, R. F., …, and Rodríguez, C. J. C. (2014). Genotype, feed type and refrigeration time on the antioxidant and oxidative stability of rabbit loin meat. Archivos de Zootecnia. 63(243): 531-542.

Wazir, H., Chay, S. Y., Zarei, M., Hussin, F. S., Mustapha, N. A., Ibadullah, W. Z. W., and Saari, N. (2019). Effects of storage time and temperature on lipid oxidation and protein cooxidation of low-moisture shredded meat products. Antioxidants. 8(10): 486.

Xiang, L., Si, Ch., Jing-En, L., Ning, W., Xin, L., Qi, A., ..., and Wen-Jun, W. (2019). Chemical composition and antioxidant activities of polysaccharides from Yingshan Cloud Mist Tea. Oxidative Medicine and Cellular Longevity. 1-11.

Publicado

2021-01-30

Cómo citar

López-Velasco, D. S., Sosa-Montes, E., Pro-Martínez, A., González-Cerón, F., & Vargas-Galicia, A. J. (2021). Efecto antioxidante de la miel de abeja sobre la carne de conejo almacenada en refrigeración. CienciaUAT, 15(2), 135–143. https://doi.org/10.29059/cienciauat.v15i2.1395

Número

Sección

Biotecnología y Ciencias Agropecuarias

Artículos similares

1 2 3 4 > >> 

También puede Iniciar una búsqueda de similitud avanzada para este artículo.