Cinética de la adsorción de fluoruro y arsénico usando nano-fibras de alúmina
DOI:
https://doi.org/10.29059/cienciauat.v14i1.1140Palabras clave:
nano-fibras, Langmuir, cinética, energía libreResumen
En muchos países del mundo, incluido México, la presencia de elementos tóxicos, como el arsénico y flúor por encima de los niveles máximos permitidos en el agua potable (0.01 mg/L y 1.5 mg/L), respectivamente está generando problemas a la salud, como el cáncer y la fluorosis esquelética, respectivamente. El objetivo de este trabajo fue determinar la cinética del proceso de adsorción del fluoruro y arsénico en soluciones sintéticas, utilizando gamma alúmina (γ-Al2O3) para establecer si el proceso se desarrolla espontáneamente. Se sintetizó γ-Al2O3 nano-fibrilar, con alta área superficial (352 m2/g), por precipitación homogénea, y se secó por espray. El nanomaterial adsorbente obtenido se usó para eliminar el fluoruro y el arsénico total de soluciones sintéticas. La morfología de la nano-fibra de γ-Al2O3 mesoporosa se analizó usando microscopía electrónica de transmisión y de barrido. El área superficial se determinó por adsorción-desorción a pH 7 de nitrógeno. Las isotermas de adsorción del proceso de remoción coincidieron con el modelo de Langmuir para ambos elementos. La γ-Al2O3 eliminó hasta 96 % de iones flúor y 92 % de arsénico total a pH 5, mientras que a pH 7 se alcanzó una remoción del 90 % y 94.2 % de fluoruro y arsénico, respectivamente. La cinética de remoción siguió el modelo de seudo-segundo orden, y el parámetro de equilibrio adimensional y la energía libre estándar de Gibbs confirmaron que el proceso se desarrolló espontáneamente. La gamma alúmina nano-fibrilar permitió la remoción natural y espontánea de arsénico y fluoruro presente en las soluciones utilizadas en este estudio.
Citas
Alconada-Magliano, M. M., Damiano, F., Carrillo-Rivera, J. J., and Fagundo-Castillo J. R. (2017). Arsenic and fluoride in water in northwestern Buenos Aires: their association with natural landscape elements. Journal of Geography and Regional Planning. 10(2): 8-27.
Anielak, A. M. and Grzegorczuk-Nowacka, M. (2011). Significance of Zeta Potential in the Adsorption of Fulvic Acid on Aluminum Oxide and Activated Carbon. Polish Journal of Environmental Studies. 20(6): 1381-1386.
Avci, G., Akhlaghi, O., Ustbas, B., Ozbay, C., Menceloglu, Y. Z., and Akbulut, O. (2016). A PCE-based rheology modifier allows machining of solid cast green bodies of alumina. Ceramics International. 42(3): 3757-3761.
Baneshi, J., Haghighi, M., Jodeiri, N., Abdollahifar, M., and Ajamein, H. (2014). Homogeneous precipitation synthesis of CuO–ZrO2–CeO2–Al2O3 nanocatalyst used in hydrogen production via methanol steam reforming for fuel cell applications. Energy Conversion and Management. 87: 928-937.
Carre, S., Gnep, N. S., Revel, R., and Magnoux, P. (2008). Characterization of the acid–base properties of transition aluminas by model reaction. Applied Catalysis A: General. 348(1): 71-78.
Chakraborty, D., Rahman, M. T., Das, B., Murrill, M., Dey, S., Mukherjee, S., and Quamruzzaman, Q. (2010). Status of groundwater arsenic contamination in Bangladesh:
-year study report. Water Research. 44(19): 5789-5802.
Chhatwani, R., Acharya, A., and Alim, I. (2016). Isotherm studies of equilibrium sorption of fluoride onto calcium alginate beads. Asian Journal of Agriculture & Life Sciences. 1(2): 9-14.
Chinnakoti, P., Chunduri, A. L. A., Vankayala, R. K., Patnaik, S., and Kamisetti V. (2017). Enhanced fluoride adsorption by nano crystalline c-alumina: adsorption kinetics, isotherm modeling and thermodynamic studies. Applied Water Science. 7(5): 2413-2423.
Coria, I. D. (2011). Variación de las propiedades superficiales a altas temperaturas en óxidos de metales de transición soportados en alúmina, para su utilización en reacciones catalíticas que involucren adsorción de gases. Invenio. 14(26): 141-154.
Das, B., Devi, R. R., Umlong, I. M., Borah, K., Banerjee, S., and Talukdar, A. Kr. (2013). Arsenic (III) adsorption on iron acetate coated activated alumina: thermodynamic, kinetics and equilibrium approach. Journal of Environmental Health Sciences & Engineering. 11(1): 42.
Franks, G. V. and Ganz, Y. (2007). Charging behavior at the alumina–water interface and implications for ceramic processing. Journal of the American Ceramic Society. 90(11): 3373-3388.
Habuda-Stanić, M., Ergović, M. R., and Flanagan, A. (2014). A review on adsorption of fluoride from aqueous solution. Materials. 7(9): 6317-6366.
Ho, Y. S. (2006). Review of second-order models for adsorption systems. Journal of Hazardous Materials. 136(3): 681-689.
Hu, F., Wu, X., Wang, Y., and Lai, X. (2015). Ultrathin γ-Al2O3 nanofibers with large specific surface area and their enhanced thermal stability by Si-doping. RSC Advances. 5(67): 54053-54058.
Jadhav, S. V., Bringas, E., Yadav, G. D., Rathod, V. K., Ortiz, I., and Marathe, K. V. (2015). Arsenic and fluoride contaminated groundwaters: A review of current technologies for contaminants removal. Journal of Environmental Management. 162: 306-325.
Jain, A. and Agarwal, M. (2017). Kinetic equilibrium and thermodynamic study of arsenic removal from water using alumina supported iron nano particles. Journal of Water Process Engineering. 19: 51-59.
Jiang, J. Q., Ashekuzzaman, S. M., Jiang A., Sharifuzzaman, S. M., and Chowdhury, S. R. (2013). Arsenic contaminated groundwater and its treatment options in Bangladesh. International Journal of Environmental Research and Public Health. 10(1): 18-46.
Jiménez-Becerril, J., Sosa, I. G., and Rivero, I. A. (2011). Synthesis of basic aluminum sulfate assisted by microwave heating. Ceramics International. 37(8): 3627-3630.
Jokanović, V., Jokanović, B., Marković-Todorović, B., and Marković, Z. (2009). Synthesis and characterization of hydrothermallyobtained colloidal pseudoboehmite/boehmite. Journal of Optoelectronics and Advanced Materials. 11(2): 164-168.
Kabir, Md. E., Saha, M. C., and Jeelani, S. (2007). Effect of ultrasound sonication in carbon nanofibers/polyurethane foam composite. Materials Science and Engineering A. 459(1-2): 111-116.
Kamble, S. P., Deshpande, G., Barve, P. P., Rayalu, S., Labhsetwar, N. K., Malyshew, A., and Kulkarni, B. D. (2010). Adsorption of fluoride from aqueous solution by alumina of alkoxide nature: Batch and continuous operation. Desalination. 264(1-2): 15-23.
Kanduti, D., Sterbenk, P., and Artnik, B. (2016). Fluoride: A review of use and effects on health. Materia socio-medica. 28(2): 133-137.
Kim, S. M., Lee, Y. J., Jun, K. W., Park, J. Y., and Potdar, H. S. (2007). Synthesis of thermo-stable high surface area alumina powder from sol–gel derived boehmite. Materials Chemistry and Physics. 104(1): 56-61.
Kumar, M. and Tamilarasan, R. (2017). Kinetics, equilibrium data and modeling studies for the sorption of chromium by Prosopis juliflora bark carbon. Arabian Journal of Chemistry. 10(2): S1567-S1577.
Kundu, S., Chowdhury, I. H., Sinha, P. K., and Naskar, M. K. (2017). Effect of organic acid-modified mesoporous alumina toward fluoride ions removal from water. Journal of Chemical & Engineering Data. 62(7): 2067-2074.
Lamouri, S., Hamidouche, M., Bouaouadja, N., Belhouchet, H., Garnier, V., Fantozzi, G., and Trelkat, J. F. (2016). Control of the γ-alumina to α-alumina phase transformation for an optimized alumina densification. Boletín de la Sociedad Española de cerámica y vidrio. 56(2): 47-54.
Mohan, D. and Pittman, C. U. Jr. (2007). Arsenic removal from water/wastewater using adsorbents - A critical review. Journal of Hazardous Materials. 142(1-2): 1-53.
Nicomel, N. R., Leus, K., Folens, K., Van-Der-Voort, P., and Laing, G. D. (2015). Technologies for arsenic removal from water: current status and future perspectives. International Journal of Environmental Research and Public Health. 13(1): 62.
Nordstroma, D. K., Zhub, X., McCleskeya, R. B., Königsbergerc, L. C., and Königsbergerc, E. (2017). Thermodynamic properties of aqueous arsenic species and scorodite solubility. Procedia Earth and Planetary Science. 17: 594-597.
Parida, K. M., Pradhan, A. C., Das, J., and Sahu, N. (2009). Synthesis and characterization of nano-sized porous gamma-alumina by control precipitation method. Materials Chemistry and Physics. 113(1): 244-248.
Qiu, H., Lv, L., Pan, B. C., Zhang, Q. J., Zhang, W. M., and Zhang, Q. X. (2009). Critical review in adsorption kinetic models. Journal of Zhejiang University-Science A. 10(5): 716-724.
Rajasulochana, P. and Preethy, V. (2016). Comparison on efficiency of various techniques in treatment of waste and sewage water – a comprehensive review. Resource-Efficient Technologies. 2(4): 175-184.
Rathore, V. K. and Mondal, P. (2017). Competitive adsorption of arsenic and fluoride onto economically prepared aluminum oxide/hydroxide nanoparticles: Multicomponent isotherms and spent adsorbent management. Industrial & Engineering Chemistry Research. 56(28): 8081-8094.
Saha, S. and Sarkar, P. (2012). Arsenic remediation from drinking water by synthesized nano-alumina dispersed in chitosan-grafted polyacrylamide. Journal of Hazardous Materials. 227-228: 68-78.
Samarghandi, M. R., Hadi, M., Moayedi, S., and Askari, F. B. (2009). Two-parameter isotherms of methyl orange sorption by pinecone derived activated carbon. Iranian J Environ Health Sci Eng. 6(4): 285-294.
Shokati-Poursani, A., Nilchi, A., Hassani A. H., Shariat, M., and Nouri, J. (2015). A novel method for synthesis of nano-c-Al2O3: study of adsorption behavior of chromium, nickel, cadmium and lead ions. International Journal of Environmental Science and Technology. 12(6): 2003-2014.
Siahpoosh, S. M., Salahi, E., Hessari, F. A., and Mobasherpour, I. (2016). Synthesis of γ-alumina with high-surface-area via sol-gel method and their performance for the removal of nickel from aqueous solution. Bulletin de la Société Royale des Sciences de Liège. 85: 912-934.
Singh, R., Singh, S., Parihar, P., Singh, V. P., and Prasad, S. M. (2015). Arsenic contamination, consequences and remediation techniques: A review. Ecotoxicology and Environmental Safety. 112: 247-270.
Singh, J., Singh, P., and Singh, A. (2016). Fluoride ions vs removal technologies: A study. Arabian Journal of Chemistry. 9(6): 815-824.
Satoshi, S. Contreras, C. Juarez, H. Aguilera, A., and Serrato, J. (2001). Homogeneous precipitation and phase transformation of mullite ceramic precursor. International Journal of Inorganic Materials. 3(7): 625-632.
Smedley, P. L. and Kinniburgh, D. G. (2002). A review of the source, behaviour and distribution of arsenic in natural waters. Applied geochemistry. 17(5): 517-568.
Varga, A., Raucsik, B., and Szakmány, G. (2017). Origin of natural arsenic and antimony contents in the permian to lower tria-ssic siliciclastic rocks of the western mecsek mountains, sw hungary. Carpathian Journal of Earth and Environmental Sciences. 12(1):5-12.
WHO, World Health Organization (2011). Guidelines for drinking water quality. Fourth edition, WHO Press, Geneva. [En línea]. Disponible en: http://whqlibdoc.who.int/
publications/2011/9789241548151_eng.pdf. Fecha de consulta: 15 de mayo de 2017.
Yang, L., Yang, M., Xu, P., Zhao, X., Bai, H., and Li, H. (2017). Characteristics of nitrate removal from aqueous, solution by modified steel slag. Water. 9(10): 757.
Zamorategui, A., Soto, J. A., and Sugita, S. (2012). The effect of drying methods on the textural properties of the pseudoboehmite synthesized by homogeneous precipitation. Advances and Applications in Mechanical Engineering and Technology. 4(4): 1-17.
Zaspalis, V., Pagana, A., and Sklari, S. (2007). Arsenic removal from contaminated water by iron oxide sorbents and porous ceramic membranes. Desalination. 217(1-3): 167-180.
Zhang, N., Yang, X., Yu, X., Jia, Y., Wang, J., Kong, L., ..., and Liu, J. (2014). Al-1,3,5-benzenetricarboxylic metal–organic frameworks: A promising adsorbent for defluoridation of water with pH insensitivity and low aluminum residual. Chemical Engineering Journal. 252: 220-229.