Próximo(s)

Metabolitos secundarios en plantas herbáceas de la Huasteca veracruzana, México

Autores/as

  • Lorena Casanova-Pérez Universidad Tecnológica de la Huasteca Hidalguense, Programa Educativo Agrobiotecnología, carretera Huejutla-Chalahuiyapa s/n, colonia Tepoxteco, Huejutla de Reyes, Hidalgo, México, C. P. 43000. https://orcid.org/0000-0001-8906-2408
  • Hugo Brígido Barrios-García Universidad Autónoma de Tamaulipas, Facultad de Medicina Veterinaria y Zootecnia "Dr. Norberto Treviño Zapata", Ciudad Victoria, Tamaulipas, México, C. P. 87274. https://orcid.org/0000-0001-7590-319X
  • Verónica Rosales-Martínez Colegio de Postgraduados Campus Campeche, Posgrado en Bioprospección y Sustentabilidad Agrícola en el Trópico, Champoton, Campeche, México, C. P. 24450. https://orcid.org/0000-0002-5895-1250

DOI:

https://doi.org/10.29059/cienciauat.v19i2.1910

Palabras clave:

agricultura, bioproductos, cultivos, seguridad alimentaria, cambio climático

Resumen

El papel de la agrobiotecnología ha sido fundamental en los últimos años para la búsqueda e implementación de buenas prácticas que conduzcan a una agricultura sustentable. Ello representa una oportunidad para que los metabolitos secundarios, de origen vegetal, sean utilizados en cultivos de interés. El objetivo de esta investigación fue evaluar los metabolitos secundarios asociados a 54 especies de plantas herbáceas identificadas como plantas medicinales en la Huasteca veracruzana, México y su potencial uso en el desarrollo de productos agrobiotecnológicos. Se revisaron fuentes bibliográficas para obtener información sobre el tipo de metabolitos encontrados en cada especie herbácea con uso medicinal identificada en la región, el órgano utilizado y el método de extracción realizada. Se encontró información de 46 especies, de las cuales, el 41 % fue reportada por poseer al menos un grupo funcional de metabolitos secundarios; el 26 % mostró la presencia de dos grupos funcionales, mientras que, el 18 % y el 15 % de las especies poseen tres y cuatro grupos funcionales de metabolitos, respectivamente. Solo 6 de las especies analizadas han sido estudiadas con fines de establecer su potencial uso agrobiotecnológico. Si bien, la mayoría de las plantas se analizan para establecer su potencial empleo farmacológico, esta información es sumamente valiosa porque brinda indicios sobre el potencial de dichas especies y sus metabolitos secundarios como base para la elaboración de productos agrobiotecnológicos, cuyo uso favorezca el manejo sustentable de la agricultura.

Biografía del autor/a

Lorena Casanova-Pérez, Universidad Tecnológica de la Huasteca Hidalguense, Programa Educativo Agrobiotecnología, carretera Huejutla-Chalahuiyapa s/n, colonia Tepoxteco, Huejutla de Reyes, Hidalgo, México, C. P. 43000.

LORENA CASANOVA PEREZ ES INGENIERO AGRÓNOMO ESPECIALISTA EN ECONOMÍA POR LA UNIVERSIDAD AUTÓNOMA CHAPINGO, MAESTRA EN CIENCIAS EN RECURSOS NATURALES Y DESARROLLO RURAL POR EL COLEGIO DE LA FRONTERA SUR, DOCTORA EN CIENCIAS EN AGROECOSISTEMAS TROPICALES POR EL COLEGIO DE POSTGRADUADOS CAMPUS VERACRUZ. SE DESEMPEÑA COMO PROFESOR TITULAR B DEL PROGRAMA EDUCATIVO AGROBIOTECNOLOGÍA EN LA UNIVERSIDAD TECNOLÓGICA DE LA HUASTECA HIDALGUENSE.

Citas

Abirami, S., Priyalakshmi, M., Soundariya, A., Samrot, A. V., Saigeetha, S., Emilin, R. R., Dhiva S., & Inbathamizh, L. (2021). Antimicrobial activity, antiproliferative activity, amylase inhibitory activity and phytochemical analysis of ethanol extract of corn (Zea mays L.) silk. Current Research in Green and Sustainable Chemistry, 4, 100089. https://doi.org/10.1016/j.crgsc.2021.100089 DOI: https://doi.org/10.1016/j.crgsc.2021.100089

Afifah, I. Q., Wibowo, I., & Ahmad, F. (2023). A newly identified B-amyrin synthase gene hypothetically involved in oleanane-saponin biosynthesis from Talinum paniculatum (Jacq.) Gaerth. Helyon, 9(7), 1-9. https://doi.org/10.1016/j.heliyon.2023.e17707 DOI: https://doi.org/10.1016/j.heliyon.2023.e17707

Alrabie, A., Al-Rabie, N. A., Al-SAeedy, M., Al-Adhreai, A., Al-Qadsy I., & Farooqui, M. (2023). Martynia annua safety and efficacy: heavy metal profile in silicoo and in vitro approaches on antibacterial and antidiabetic activities. Formerly Natural Product Letters, 37(6), 1016-1022. https://doi.org/10.1080/14786419.2022.2097227 DOI: https://doi.org/10.1080/14786419.2022.2097227

Amaral, A. F., Jühlinch, L. M., Takeuti, K. L., Rolim, V. M., Goncalces, M. A., Da-Cruz, A. S., Driemeier, D., & De-Barcellos, D. E. (2015). Outbreack of cumarin poisoning in suckling piglets. Acta Scientiae Veterinariae, 43, 1-9. https://pesquisa.bvsalud.org/portal/resource/pt/vti-13964

Ávila, A. y González, Á. (1998). Diagnóstico regional de La Huasteca. Proyecto Perfiles Indígenas de México. [Archivo PDF]. [En línea]. Disponible en: https://www.aacademica.org/salomon.nahmad.sitton/20.pdf. Fecha de consulta: 13 de febrero de 2024.

Bano, A., Qadri, T. A., & Khan, M. N. (2023). Bioactive metabolites of plants and microbes and their role in agricultural sustainability and mitigation of plant stress. South African Journal of Botany, 159, 98-109. https://doi.org/10.1016/j.sajb.2023.05.049 DOI: https://doi.org/10.1016/j.sajb.2023.05.049

Bhuvaneshwari, K., Gokulanathan, A., Jayanthi, M., Govindasamy, V., Milella, L., Lee, S., Yang, D. C., & Girija, S. (2016). Can Ocimum basilicum L. and Ocimum tenuiflorum L. in vitro culture be a potential source of secondary metabolites? Food Chemistry, 194, 55-60. https://doi.org/10.1016/j.foodchem.2015.07.136 DOI: https://doi.org/10.1016/j.foodchem.2015.07.136

Borges, P. H. O., Pedreiro, S., Baptista, S. J., Geraldes, C. F. G. C., Batista, M. T., Silva, M. M. C., & Figueirinha, A. (2021). Inhibition of -glucosidase by flavonoids of Cymbopogon citratus (DC) Stapf. Journal of Ethnopharmacology, 280, 114470. https://doi.org/10.1016/j.jep.2021.114470 DOI: https://doi.org/10.1016/j.jep.2021.114470

Brahmachari, G., Gorai, D., & Roy, R. (2013). Ar-gemone mexicana: Chemical and pharmacological aspects. Revista Brasileira de Farmacognosia, 23(3), 559-575. htps://doi.org/10.1590/S0102-695X2013005000021 DOI: https://doi.org/10.1590/S0102-695X2013005000021

Bressan, S., Kutscher, M., Marquez, R., Centero, P. R., Correia, P. P., Das-Chagas, D., Loiola, O. D., Dos- Reis, A., Osório, R., & Brum M. (2024). Screening of alkaloids and withanolides isolated from Solanacea plants for antifungal properties against non-wild tupe Sporothrix brasiliensis. Journal of Medical Mycology, 34(1), 101451. https://doi.org/10.1016/j.mycmed.2023.101451 DOI: https://doi.org/10.1016/j.mycmed.2023.101451

Canel, Y. (2012). Actividad microbiana y antimicótica de los extractos de cinco plantas del género Vernonia nativas del sur-occidente de Guatemala. [En línea]. Disponible en: http://biblioteca.usac.edu.gt/tesis/06/06_3225.pdf. Fecha de consulta: 11 de enero de 2024.

Casanova-Pérez, C., Delgado-Caballero, C. E., Cruz-Bautista, P. y Casanova-Pérez, L. (2022). Plantas medicinales usadas por los Tének en la Huasteca, México. CienciaUAT, 16(2), 40-58. https://doi.org/10.29059/cienciauat.v16i2.1576 DOI: https://doi.org/10.29059/cienciauat.v16i2.1576

Chávez-Acuña, I. J., Flores-Flores, J. L., Domínguez-Cortinas, G. y Chávez-García, E. (2022). Percepción social del papel de la variabilidad y el cambio climático sobre los sistemas socio-ecológicos en comunidades indígenas y mestizas de la Huasteca Potosina en México. Estudios Sociales, 32(59), 1-35. https://doi.org/10.24836/es.v32i59.1179 DOI: https://doi.org/10.24836/es.v32i59.1179

Chávez-Arias, C. C., Ramírez-Godoy, A., & Restrepo-Díaz, H. (2022). Influence of drougth, high temperaturas, and/or defense against arthropod herbivory on the production of secondary metabolites in maize plants. A review. Current Plant Biology, 32, 100268. https://doi.org/10.1016/j.cpb.2022.100268 DOI: https://doi.org/10.1016/j.cpb.2022.100268

Chen, X. M., Lu W., Zhang, Z. H., Zhang, J. Y., Luong, T. M., Lio L., Kim, Y. H., Li, C. H., & Gao, J. M. (2022). Cassane diterpenois from de aerial parts of Caesalpinia pulcherrima and their antibacterial and anti-glioblastoma activity. Phytochemistry, 196, 113082. https://doi.org/10.1016/j.phytochem.2021.113082 DOI: https://doi.org/10.1016/j.phytochem.2021.113082

Chomel, M., Guittonny-Larchevêque, M., Fernandez, C., Gallet, C., Des-Rochers, A., Paré, D., & Baldy, V. (2016). Plant secondary metabolites: a key driver of litter decomposition and soil nutrient cycling. Journal of Ecology, 104(6), 1527-1541. https://doi.org/10.1111/1365-2745.12644 DOI: https://doi.org/10.1111/1365-2745.12644

Devi, K., Soni S., Tripathi, V., Pandey, R., & Moharana, B. (2022). Ethanolic extract of Tridax procumbens mitigates pulmonary inflammation via inhibition of NF-kB/p65/ERK mediated signalling in an allergic asthma model. Phytomedicine, 99, 154008. https://doi.org/10.1016/j.phymed.2022.154008 DOI: https://doi.org/10.1016/j.phymed.2022.154008

Duncan, C. E., Gorbet, D. W., & Talcott, S. T. (2006). Phytochemical content and antioxidant capacity of water-soluble isolates from peanuts (Arachis hypogaea L.). Food Research International, 39(8), 898-904. https://doi.org/10.1016/j.foodres.2006.05.009 DOI: https://doi.org/10.1016/j.foodres.2006.05.009

Echavarría, A., D´Armas, H., Matute, N., Jarammillo, C., Rojas, L. y Benítez, R. (2016). Evaluación de la capacidad antioxidante y metabolitos secundarios de extractos de dieciséis plantas medicinales. Revista Ciencia Unemi, 9(20), 29-35. https://www.redalyc.org/pdf/5826/582663826005.pdf DOI: https://doi.org/10.29076/issn.2528-7737vol9iss20.2016pp29-35p

Erosa-Rejón, G., Peña-Rodríguez, L. M., & Sterner, I. O. (2009). Secondary metabolites from Heliotropium angiospermum. Journal of the Mexican Chemical Society, 53(2), 44-47. https://www.redalyc.org/pdf/475/47512080003.pdf DOI: https://doi.org/10.29356/jmcs.v53i2.1004

Estrada, E., Ordoñez, P. y Morales, O. (2005). Validación de la actividad antifúngica del tubérculo de Xanthosoma robustum y determinación de metabolitos secundarios responsables de la actividad. Revista Científica, 9(1), 25-29. https://doi.org/10.54495/Rev.Cientifica.EdicionEspecial2005.198 DOI: https://doi.org/10.54495/Rev.Cientifica.EdicionEspecial2005.198

Fajardo-Romero, A., Arroyo-Rivera, A. y Ramírez-Navas, J. S. (2016). Extracción de flavonoides de la envoltura externa de cebolla roja (Allium cepa). UG Ciencia, 11, 119-126. https://doi.org/10.18634/ugcj.22v.1i.599 DOI: https://doi.org/10.18634/ugcj.22v.1i.599

Feng, G., Huang, S., Liu, Y., Xiao, F., Liu, J., Zhang, Z., Chen, Q., Cao, Y., Chen, D., Zhou, Y., Liu, G., Liu, Y., & Niu, X. (2018). The transcriptome analyses of Tagetes erecta provides novel insights into secondary metabolite biosynthesis during flower development. Gene, 660, 18-27. https://doi.org/10.1016/j.gene.2018.03.051 DOI: https://doi.org/10.1016/j.gene.2018.03.051

Geller-McGrath, D., Mara, P., & Taylor, G. T. (2023). Diverse secondary metabolites are expressed in particle-associated and free-living microorganisms of the permanently anoxic Cariaco Basin. Nature Communications, 14, 656. https://doi.org/10.1038/s41467-023-36026-w DOI: https://doi.org/10.1038/s41467-023-36026-w

Ghasemi, S., Kumleh, H., Kordrostami, M., & Rezadoost, M. H. (2023). Drought stress-mediated alterations in secondary mteabolites and biosynthetic gene expresión in cumin plants: Insights from gene-specific and metabolite analyses. Plant Stress, 10, 100241. https://doi.org/10.1016/j.stress. 2023.100241 DOI: https://doi.org/10.1016/j.stress.2023.100241

González-Trujano, M. E., Gutiérrez-Valentino, C., Hernández-Arámburo, M., Díaz-Reval, M. I., & Pellicer, F. (2019). Identification of some bioactive metabolites and inhibitory receptors in the antinociceptive activity of Tagetes lucida Cav. Life Sciences, 231(15), 116523. https://doi.org/10.1016/j.lfs.2019.05.079 DOI: https://doi.org/10.1016/j.lfs.2019.05.079

Hernández, E. y García-Martínez, I. (2016). Brasinoesteroides en la agricultura. Revista Mexicana de Ciencias Agrícolas, 7(2), 41-50. https://doi.org/10.29312/remexca.v7i2.356 DOI: https://doi.org/10.29312/remexca.v7i2.356

Hernández, M. R., Méndez, L., & Aguilar, A. A. (2022). Contribution to the chemical stufdy of Rivina humilis. Brazilian Journal of Animal and Enviromental Research, 5(3), 2603-2613. https://ojs.brazilianjournals.com.br/ojs/index.php/BJAER/article/download/50032/37640/124975 DOI: https://doi.org/10.34188/bjaerv5n3-004

INEGI, Instituto Nacional de Estadística y Geografía (2009). Prontuario de información geográfica municipal de los Estados Unidos Mexicanos Tantoyuca, Veracruz de Ignacio de la Llave. [En línea]. Disponible en: http://www3. inegi.org.mx/contenidos/app/mexicocifras/datos_geogra-ficos/30/30155.pdf. Fecha de consulta: 21 de julio de 2024.

Hao, D. C., Gu, X. J., & Xiao, P. G. (2015). Phytochemical and biological research of Salvia medicinal resources. Medicinal Plants, 14, 587-639. https://doi.org/10.1016/B978-0-08-100085-4.00014-1 DOI: https://doi.org/10.1016/B978-0-08-100085-4.00014-1

Hurd, M. C., Kwon, M., & Ro, D. K. (2017). Functional identification of a Lippia dulcis bornyl diphosphate synthase that contains a duplicated, inhibitory arginine-rich motif. Biochemical and Biophysical Research Communications, 490(3), 963-968. https://doi.org/10.1016/j.bbrc.2017.06.147 DOI: https://doi.org/10.1016/j.bbrc.2017.06.147

Jaramillo, B. E., Duarte, E. y Delgado, W. (2012). Bioactividad del aceite esencial de Chenopodium ambrosioides colombiano. Revista Cubana de Plantas Medicinales, 17(1), 54-64. http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S1028-47962012000100006&lng=es&tlng=es.

Juárez-Flores, B. I., Jasso-Pineda, Y., Aguirre-Rivera, J. R. y Jasso-Pineda, I. (2010). Efecto de polvos de Asteráceas sobre el gorgojo del maíz (Sitophilus Zeamais Motsch). Polibotánica, 30, 123-135. https://core.ac.uk/download/pdf/288192163.pdf

Kennedy, D. (2019). Plant-derived phytochemicals to enhance cognitive function and alertness. Sports Science Exchange, 29(193), 1-5. https://www.gssiweb.org/docs/librariesprovider9/sse-pdfs/sse_193_fitoquimicos_derivados_plantas.pdf?sfvrsn=2

Khosakueng, M. & Taweechaisupapong, S. (2024). Cymbopogon citratus L. essential oil as a potential anti-biofilm agent active against antibiotic-resistant bacteria isolated from chronic rhinosinusitis patients. Biofouling, 29, 1-14. https://doi.org/10.1080/08927014.2024.2305387 DOI: https://doi.org/10.1080/08927014.2024.2305387

Lima, S. E., Calloi, R. A., Signor, C. A., Macedo, A. A., Isernhagen, M., Pires, L., Oliveira, A., Paes-de-Almedia, V., Manfron, J., Carvalho, R. I., Carvalho, A., Brentan, D., Botelho, E. L., Dalsente, P. R., & Casparoto, A. (2019). Ethnopharmacological approaches to Talinum paniculatum (Jacq.) Gaerth. Exploring cardiorenal effects from the Brazilian Cerrado. Journal of Ethnopharmacology, 28(238), 111873. https://doi.org/10.1016/j.jep.2019.111873 DOI: https://doi.org/10.1016/j.jep.2019.111873

Loza-Cornejo, S., Aparicio-Fernández, X., Patakfalvi, R. J. y Rosas-Saíto, G. H. (2017). Caracteres anatómicos y fitoquímicos del tallo y raíz de Mammillaria uncinata (Cactaceae). Acta Botánica Mexicana, 120, 21-30. https://doi.org/10.21829/abm120.2017.1159 DOI: https://doi.org/10.21829/abm120.2017.1159

Lucena, A. (2020). Actividad biológica de Tournefortia hirsutissima sobre larvas de Spodoptera frugiperda. Tesis de Licenciatura, Universidad Autónoma del Estado de Morelos, Facultad de Ciencias Biológicas, Cuernavaca, Morelos 58 Pp. [En línea]. Disponible en: http://riaa.uaem.mx/xmlui/bitstream/handle/20.500.12055/3241/LUCAVZ09.pdf?sequence=1&isAllowed=y. Fecha de consulta: 3 de mayo de 2024.

Luna-Rodríguez, A. K., Zenil-Zenil, M. A., Cristians, S., Osuna-Fernández, A. M., & Osuna-Fernández, H. R. (2022). Evaluation for the hypoglycemic effect of Tectaria heracleifolia (Willd.) under in mice with induced type 2 diabetes. Polibotánica, 54, 203-217. https://www.scielo.org.mx/pdf/polib/n54/1405-2768-polib-54-203.pdf

Lustre, H. (2022). Los superpoderes de las plantas: los metabolitos secundarios en su adaptación y defensa. Revista Digital Universitaria, 23(2), 1-8. http://doi.org/10.22201/cuaieed.16076079e.2022.23.2.10 DOI: https://doi.org/10.22201/cuaieed.16076079e.2022.23.2.10

Luz, D. A., Pinheiro, A. M., Silva, M. L., Monteiro, M. C., Prediger, R. D., Ferraz-Maia, C. S., & Fontes-Júnior, E. A. (2016). Ethnobotany, phytochemistry and neuropharmacological effects of Petiveria alliacea L. (Phytolaccaceae): A review. Journal of Ethnopharmacology, 185, 182-201. https://doi.org/10.1016/j.jep.2016.02.053 DOI: https://doi.org/10.1016/j.jep.2016.02.053

Marie-Magdeleine, C., Udino, L., Philibert, L., Bo-cage, B., & Archimede, H. (2014). In vitro effects of Musa x paradisiaca extracts on four developmental stages of Haemonchus contortus. Research in Veterinary Science, 96(1), 127-132. https://doi.org/10.1016/j.rvsc.2013.12.004 DOI: https://doi.org/10.1016/j.rvsc.2013.12.004

Martin, D. A. (2017). Los compuestos fenólicos: un acercamiento a su biosíntesis, síntesis y actividad biológica. RIAA, 9(1), 81-103. https://doi.org/10.22490/21456453.1968 DOI: https://doi.org/10.22490/21456453.1968

Matrose, N. A., Obikeze, K., Belay, Z. A., & Caleb, O. J. (2021). Impact of spatial variation and extraction solvents on bioactive compounds, secondary metabolites and antifungal efficacy of South African Impepho [Helichrysum odoratissimum (L.) Sweet]. Food Bioscience, 42, 101139. https://doi.org/10.1016/j.fbio.2021.101139 DOI: https://doi.org/10.1016/j.fbio.2021.101139

Montoya, E. (2022). Actividad biológica de los grupos de metabolitos secundarios presentes en las pteridofitos Goniopteris stolzeana (AR Sm.) salino y TE Alemida y Adiantum amplum C Presi. Tesis de Licenciatura en Biología. Universidad de Ciencias y Artes de Chiapas, Tuxtla Gutiérrez, Chiapas, 172 Pp. [En línea]. Disponible en: https://www.researchgate.net/publication/368461548_Acividad_biologica_de_los_grupos_de_metabolitos_secundarios_presentes_en_los_pteridofitos_Goniopteris_stolzeana_y_Adiantum_amplum. Fecha de consulta: 23 de febrero de 2024.

Morais-Braga, M. F. B., Souza, T. M., Santos, K. K. A., Guedes, G. M. M., Andrade, J. C., Vega, C., Rolón, M., Costa, J. G. M., Saraiva, A. F., & Coutinho, H. D. M. (2013). Phenol composition, cytotoxic and antikinetoplastidae activities of Lygodium venustum SW. (Lygodiaceae). Experimental Parasitology, 134 (2), 178-182. https://doi.org/10.1016/j.exppara.2013.03.014 DOI: https://doi.org/10.1016/j.exppara.2013.03.014

Morales, Q. N. (2018). Estudio fitoquímico e identificación de compuestos antimicrobianos de dos plantas de la familia Commelinaceae. Tesis de Maestría en Ciencias en Biotecnología aplicada. IPN-CIBA Tlaxcala, México. [En línea]. Disponible en: https://tesis.ipn.mx/bitstream/handle/123456789/27222/QUETZALI%20NICTE%20MORALES%20RABANALES.pdf?sequence=1&isAllowed=y. Fecha de consulta: 23 de marzo de 2024.

Morales-Ubaldo, Y., Rivero-Pérez, N., Morales-Ubaldo, A. L., Valladares-Carranza, B., López-Rodríguez, G. M. y Zaragoza-Bastida, A. (2022). Dalea bicolor: Una alternativa para el tratamiento de bacterias de importancia en salud pública. Revista de Investigaciones Veterinarias del Perú, 33(6), 1-6. http://dx.doi.org/10.15381/rivep.v33i6.22863 DOI: https://doi.org/10.15381/rivep.v33i6.22863

Morón, F., Victoria, M. C., Morejón, Z., López, M., García, A. I., Fuentes, V., Robineau, L. y Campo, C. (2008). Tamizaje fitoquímico, actividad analgésica y antiinflamatoria de decocción de Costus pictus D. Don. Revista Cubana de Plantas Medicinales, 13(4), [En línea]. Disponible en: http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S1028-47962008000400013&lng=es&tlng=es. Fecha de consulta: 3 de enero de 2024.

Navarro, L. G., Agosto, J. G., & Nolasco, H. (2023). Composición fitoquímica y propiedades antioxidantes de la planta mala madre (Kalanchoe pinnata). South Florida Journal of Development, 481, 201-214. https://doi.org/10.46932/sfjdv4n1-014 DOI: https://doi.org/10.46932/sfjdv4n1-014

Ndam, L. M., Ngone, A. M., Nkongho, R. N., Fongod, A. G., Tening, A. S., & Fujii, T. (2021). Allelopatic potentiality of Euphorbia hypecicifolia L. on germinaticion and seedling development of sympatric crops and weeds. International Annals of Science, 10(1), 134-150. https://doi.org/10.21467/ias.10.1.134-150 DOI: https://doi.org/10.21467/ias.10.1.134-150

Nirmala, C., Shahar, B., Dolma, N., Santosh, O. (2022). Promising underutilized wild plants of cold desert Ladakh, India for nutritional security and health benefits. Applied Food Research, 2(2), 100145. https://doi.org/10.1016/j.afres.2022.100145. DOI: https://doi.org/10.1016/j.afres.2022.100145

Omokolo, N. D., Boudjeko, T., & Whitehead, C. S. (2005). Comparative analyses of alterations in carbohydrates, amino acids, phenols and lignin in roots of three cultivars of Xanthosoma sagittifolium infected by Pythium myriotylum. South African Journal of Botany, 71(3-4), 432-440. https://doi.org/10.1016/S0254-6299(15)30596-2 DOI: https://doi.org/10.1016/S0254-6299(15)30116-2

Ouakouak, H., Benchikha, N., Hassani, A., & Ashour, M. L. (2019). Chemical composition and biological activity of Mentha citrata Ehrh esencial oils growing in douthern Algeria. Journal of Food Sciencie and Technology, 56(12), 346-535. https://doi.org/10.1007%2Fs13197-019-04005-z DOI: https://doi.org/10.1007/s13197-019-04005-z

Osuna, A. M. (2015). Inexistentes las estrategias de cultivo para plantas y árboles medicinales, en Boletín UNAM. [En línea]. Disponible en: https://www.comunicacionsocial.uam.mx/boletinesuam/124-15.html. Fecha de consulta: 10 de febrero de 2024.

Pérez-Méndez, R., Jiménez-Quesada, K. y Garro-Monge, G. (2022). Cultivo in vitro de raíces pilosas del arbusto Phyllanthus acuminatus (Phyllantha-ceae). Revista de Biología Tropical, 70(1), 647-657. http://dx.doi.org/10.15517/rev.biol.trop.2022.49227 DOI: https://doi.org/10.15517/rev.biol.trop..v70i1.49227

Picking, D., Delgoda, R., Boulogne, I., & Mitchell, S. (2013). Hyptis verticillata Jacq: A review of its traditional uses, phytochemistry, pharmacology and toxicology. Journal of Ethnopharmacology, 147(1), 16-41. https://doi.org/10.1016/j.jep.2013.01.039 DOI: https://doi.org/10.1016/j.jep.2013.01.039

Priya, S. & Serva, M. (2023). Physicochemical characterization, polyphenols and flavonoids of different extracts from leaves of four varieties of tulsi (Ocimum sp.). South African Journal of Botany, 159, 381-395. https://doi.org/10.1016/j.sajb.2023.06.025 DOI: https://doi.org/10.1016/j.sajb.2023.06.025

Quian, L., Chunhong, Z., Huiyong, F., & Leati, L. (2023). Indispensable biomolecules for plants defense againts pathogens: NBS-LRR and “nitrogen pool” alkaloids. Plant Science, 334, 111752. https://doi.org/10.1016/j.plantsci.2023.111752 DOI: https://doi.org/10.1016/j.plantsci.2023.111752

Romo-Rico, J., Murali, S., Basaka, K., Golledge, J., & Jacob, M. (2022). Potential of plant secondary metabolite-based polymers to enhance wound healing. Acta Biomateralia, 147, 34-49. https://doi.org/10.1016/j.actbio.2022.05.043 DOI: https://doi.org/10.1016/j.actbio.2022.05.043

Ruiz-Cancino, A., Cano, A. E., & Delgado, G. (1993). Sesquiterpene lactones and flavonoids from Artemisia ludoviciana ssp. mexicana. Phytochemistry, 33(5), 1113-1115. https://doi.org/10.1016/0031-9422(93)85032-M DOI: https://doi.org/10.1016/0031-9422(93)85032-M

Santos, P. C., Oliveria, f., Bronzel, J. L., Payarini, R., Pereira, G. M., Chorilli, M., Reis, C., Pereira, L., & Gonzalves, R. M. (2022). Insecticidal activity of Tagetes erecta and Tagetes patula extracts and fractions free and microencapsulated. Biocatalysis in Agricultural Biotecnnology, 45, 102511. https://doi.org/10.1016/j.bcab.2022.102511 DOI: https://doi.org/10.1016/j.bcab.2022.102511

Senthil-Nathan, S., Park, S. U., & Day, B. (2022). Plant secondary metabolites as bioactive substance for the sustainable agriculture. Physiological and Molecular Plant Pathology, 121, 101890. https://doi.org/10.1016/j.pmpp.2022.101890 DOI: https://doi.org/10.1016/j.pmpp.2022.101890

Silva, M., Terra, W. R., & Ferreira, C. (2006). Absorption of toxic -glucosides produced by plants and their effect on tissue trehalases from insects, Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 143(3), 0-373. https://doi.org/10.1016/j.cbpb.2005.12.011 DOI: https://doi.org/10.1016/j.cbpb.2005.12.011

Sivasamugham, L. A., Nimalan, V., & Subramaniam, G. (2021). Antibacterial effects of Musa sp. ethanolic leaf extracts against methicillin-resistant and susceptible Staphylococcus aureus. Formerly Natural Product Letters, 35, 107-110. https://doi.org/10.1016/j.sajce.2020.09.007 DOI: https://doi.org/10.1016/j.sajce.2020.09.007

Soubedi, B., Poudel, A., & Aryal, S. (2023). The impact of climate change on insect pest biology and ecology: Implications for pest management strategies, crop production, and food security. Journal of Agriculture and Food Research, 14, 100733, https://doi.org/10.1016/j.jafr.2023.100733 DOI: https://doi.org/10.1016/j.jafr.2023.100733

Sun, Y. & Fernie, A. R. (2023). Plant secondary metabolism in a fluctuating world: climate change perspectives. Trends in Plant Science, 29(5), 560-571. https://doi.org/10.1016/j.tplants.2023.11.008 DOI: https://doi.org/10.1016/j.tplants.2023.11.008

Suselo, Y. H., Indarto, D., Wasita, B., & Hartono, H. (2023). Alkaloid fraction of Mirabilis jalapa Linn. Florwers has low cytotoxicity and increases iron absorption through Erythropoietin-Matriptase-2-He-pcidim pathway in iron deficiency hepatocarcinoma cell model. Saudi Journal ob Biological Sciencies, 30(1), 103508. https://doi.org/10.1016/j.sjbs.2022.103508 DOI: https://doi.org/10.1016/j.sjbs.2022.103508

Tabarez, A. (2019). Evaluación de la actividad antioxidante de extractos y xantonas en un modelo químico y celular. [En línea]. Disponible en: https://tesis.ipn.mx/handle/123456789/27338. Fecha de consulta: 21 de enero de 2024.

Uysal, S., Gevrenova, R., Sinan, K. I., Bayarslan, A. U., Altunoglu, Y. C., Zheleva-Dimitrova, D., Ak, G., Baloglu, M., Etienne, O., Lobine, D., Mahomoodally, M., & Zengin, G. (2021). New perspectives into the chemical characterization of Sida acuta Burm. f. extracts with respect to its anti-cancer, antioxidant and enzyme inhibitory effects. Process Biochemistry, 105, 91-101. https://doi.org/10.1016/j.procbio.2021.03.028 DOI: https://doi.org/10.1016/j.procbio.2021.03.028

Vanti, G. L., Kurjogi, M., Basavesha, K. N., Teradal, N. L., Masaphy, S., & Nargund, V. B. (2019). Synthesis and antibacterial activity of solanum torvum mediated silver nanoparticle against Xanthomonas axonopodis pv. punicae and Ralstonia solanacearum. Journal of Biotechnology, 309, 20-28. https://doi.org/10.1016/j.jbiotec.2019.12.009 DOI: https://doi.org/10.1016/j.jbiotec.2019.12.009

Vargas, M. (2014). Actividad microbiana de extractos de chile (Capsicum annum L.) cultivado en invernadero empleando factores inductores de metabolitos (FIMs). Tesis de Maestría en Ciencias en Ingeniería de Biosistemas. Universidad Autónoma de Querétaro. Querétaro, Qro., 88 Pp. [En línea]. Disponible en: https://ri-ng.uaq.mx/bitstream/123456789/792/1/RI003900.PDF. Fecha de consulta: 17 de abril de 2024.

Yadav, B., Jogawat, A., Rahman, S., & Narayan, O. M. (2021). Secondary metabolites in the drought stress tolerance of crop plants: A review. Gene Reports, 23, 101040. https://doi.org/10.1016/j.genrep.2021.101040. DOI: https://doi.org/10.1016/j.genrep.2021.101040

Zachariah, S. M., Aleykutty, N. A., Viswanad, V., Jacob, S., & Prabhakar, V. (2011). In-vitro Antioxidant Potential of Methanolic Extracts of Mirabilis jalapa Linn. Free Radicals and Antioxidants, 1(4), 82-86. https://doi.org/10.5530/ax.2011.4.13 DOI: https://doi.org/10.5530/ax.2011.4.13

Zhang, C. P., Zhang, J. L., Sun, Z. R., Liu, X. Y., Shu, L. Z., Wu, H., Song, Y., & He, D. H. (2022). Genomewide identification and characterization of terpene synthases genes in Gossypium hirsutum. Gene, 828(20), 146462. https://doi.org/10.1016/j.gene.2022.146462 DOI: https://doi.org/10.1016/j.gene.2022.146462

Zhao, P., Iwamoto, Y., Kouno, I., Egami, Y., & Yamamoto, H. (2004). Stimulating the production of homoisoflavonoids in cell suspension cultures of Caesalpinia pulcherrima using cork tissue. Phytochemistry, 65(17), 2455-2461. https://doi.org/10.1016/j.phytochem.2004.08.004 DOI: https://doi.org/10.1016/j.phytochem.2004.08.004

Zárate-Martínez, W., González-Morales, S., Ramírez-Godina, F., Robledo-Olivo, A. y Juárez-Maldonado, A. (2021). Efecto de los ácidos fenólicos en el sistema antioxidante de plantas de tomare (Solanum lycopersicum Mill.). Agronomía Meso-americana, 32(3), 854-868 https://doi.org/10.15517/am.v32i3.45101 DOI: https://doi.org/10.15517/am.v32i3.45101

Descargas

Publicado

2024-10-25

Cómo citar

Casanova-Pérez, L. ., Barrios-García, H. B., & Rosales-Martínez, V. (2024). Metabolitos secundarios en plantas herbáceas de la Huasteca veracruzana, México. CienciaUAT, 19(2). https://doi.org/10.29059/cienciauat.v19i2.1910

Número

Sección

Biología y Química

Artículos más leídos del mismo autor/a

Artículos similares

1 2 3 4 5 6 7 8 9 10 > >> 

También puede Iniciar una búsqueda de similitud avanzada para este artículo.