Forthcoming

Robust zero-watermarking algorithm for image authentication using hybrid spatial-frequency features and siamese neural networks

Authors

  • Rodrigo Eduardo Arevalo-Ancona Instituto Politécnico Nacional, Escuela Superior de Ingeniería Mecánica y Eléctrica, Unidad Culhuacán, Sección de Estudios de Posgrado e Investigación, avenida Sta. Ana, núm. 1000, San Francisco Culhuacán, Culhuacán CTM V, Coyoacán, Ciudad de México, México, C. P. 04440.
  • Eduardo Fragoso-Navarro Instituto Politécnico Nacional, Escuela Superior de Ingeniería Mecánica y Eléctrica, Unidad Culhuacán, Sección de Estudios de Posgrado e Investigación, avenida Sta. Ana, núm. 1000, San Francisco Culhuacán, Culhuacán CTM V, Coyoacán, Ciudad de México, México, C. P. 04440 https://orcid.org/0000-0003-0803-5139
  • Manuel Cedillo-Hernández Instituto Politécnico Nacional, Escuela Superior de Ingeniería Mecánica y Eléctrica, Unidad Culhuacán, Sección de Estudios de Posgrado e Investigación, avenida Sta. Ana, núm. 1000, San Francisco Culhuacán, Culhuacán CTM V, Coyoacán, Ciudad de México, México, C. P. 04440. https://orcid.org/0000-0002-9149-9841

DOI:

https://doi.org/10.29059/cienciauat.v20i1.1983

Keywords:

zero-watermarking, deep learning, siamese neural network, ownership authentication, image security

Abstract

The use and distribution of digital files has increased due to advancements in information technologies. This has created the need for the development of copyright protection systems. In the context of digital images, it is essential to minimize security risks associated with unauthorized distribution and ensure the integrity of visual information. The objective of this paper was to develop a robust zero-watermarking algorithm designed for user ownership verification and the recovery of original images in grayscales in cases of manipulation. The proposed method employed a Siamese neural network with a architecture model consisted of two branches: one learns frequency-domain features from discrete wavelet transform coefficients, and other that extract spatial features from the other image. Additionally, a neural network trained with spatial features was used to reconstruct a grayscale version of the original image after tampering. The proposed method proved its using natural color images demonstrated the high effectiveness in processing times, precision and of the watermark recovery process for verifying user ownership and accurately authenticating manipulated images. Highlighted its improvements robustness when encountering geometrical distortions such as rotation, translation, transformation, affine, clipping and scaling, as well as the combination of some distortions.  The trained autoencoder preserves high fidelity in grayscale image reconstruction that has suffered alterations by combining manipulations with other distortions. The proposed algorithm proved to be an effective solution for the authentication and protection of copyright in digital images.

References

Amini, M., Sadreazami, H., Ahmad, M. O., & Swamy, M. N. S. (2018). A channel-dependent statistical watermark detector for color images. IEEE Transactions on Multimedia, 21(1), 65-73. https://doi.org/10.1109/TMM.2018.2851447. DOI: https://doi.org/10.1109/TMM.2018.2851447

Amerini, I., Ballan, L., Caldelli, R., Del-Bimbo, A., & Serra, G. (2011). A SIFT-based forensic method for copy-move attack detection and transformation recovery. IEEE Transactions on Information Forensics and Security, 6(3), 1099-1110. https://doi.org/10.1109/TIFS.2011.2129512. DOI: https://doi.org/10.1109/TIFS.2011.2129512

Arevalo-Ancona, R. E., Cedillo-Hernandez, M., & Garcia-Ugalde, F. J. (2024). Robust image tampering detection and ownership authentication using zero-watermarking and Siamese neural networks. International Journal of Advanced Computer Science and Applications, 15(10). https://doi.org/10.14569/IJACSA.2024.0151046 DOI: https://doi.org/10.14569/IJACSA.2024.0151046

Aydemir, G., Paynabar, K., & Acar, B. (2022). Robust feature learning for remaining useful life estimation using Siamese neural networks. In 2022 30th European signal processing conference (EUSIPCO) (pp. 1432-1436). IEEE.https://doi.org/10.23919/EUSIPCO55093.2022.9909630. DOI: https://doi.org/10.23919/EUSIPCO55093.2022.9909630

Chakraborty, U., Thilagavathy, D., Sharma, S. K., & Singh, A. K. (2024). Hybrid deep learning with AlexNet feature extraction and U-Net classification for early detection in leaf diseases. ICTACT Journal on Soft Computing, 14(3), 3255-3262. https://doi.org/10.21917/ijsc.2024.0457 DOI: https://doi.org/10.21917/ijsc.2024.0457

Darwish, M. M., Farhat, A. A., & El-Gindy, T. M. (2023). Convolutional neural network and 2D logistic-adjusted-Chebyshev based zero-watermarking of color images. Multimedia Tools and Applications, 83(10), 29969-29995. https://doi.org/10.1007/s11042-023-16649-3. DOI: https://doi.org/10.1007/s11042-023-16649-3

Dong, F., Li, J., Bhatti, U. A., Liu, J., Chen, Y. W., & Li, D. (2023a). Robust zero-watermarking algorithm for medical images based on improved NasNet-Mobile and DCT. Electronics, 12(16), 3444. https://doi.org/10.3390/electronics12163444. DOI: https://doi.org/10.3390/electronics12163444

Dong, S., Li, J., Bhatti, U. A., Ma, J., Dong, F., & Li, Y. (2023b). Robust zero-watermarking algorithm for medical images based on GFTT-KAZE and DCT. 26th ACIS International Winter Conference on Software Engineering, Artificial Intelligence, Net-working and Parallel Distributed Computing (SNPD-Winter). https://doi.org/10.1109SNPD-Winter57765.2023.10223753 DOI: https://doi.org/10.1109/SNPD-Winter57765.2023.10223753

Gong, C., Liu, J., Gong, M., Li, J., Bhatti, U. A., & Ma, J. (2022). Robust medical zero-watermarking algorithm based on Residual DenseNet. IET Biometrics, 11(2), 135-146. https://doi.org/10.1049/bme2.12100. DOI: https://doi.org/10.1049/bme2.12100

Han, B., Du, J., Jia, Y., & Zhu, H. (2021). Zero-watermarking algorithm for medical image based on VGG19 deep convolution neural network. Journal of Healthcare Engineering, (1), 5551520. https://doi.org/10.1155/2021/5551520. DOI: https://doi.org/10.1155/2021/5551520

Huang, T., Xu, J., Tu, S., & Han, B. (2023). Robust zero-watermarking scheme based on a depthwise overparameterized VGG network in healthcare information security. Biomedical Signal Processing and Control, 81, 1-10. https://doi.org/10.1016/j.bspc.2022.104478. DOI: https://doi.org/10.1016/j.bspc.2022.104478

Ikbal, F. & Gopikakamari, R. (2022). Performance analysis of SMRT-based color image watermarking in different color. Information Security Journal, 31(2), 157-167. https://doi.org/10.1080/19393555.2021.1873465. DOI: https://doi.org/10.1080/19393555.2021.1873465

Jing, W. (2020). November). Research on Digital Image Copying Watermarking Algorithm Based on Deep Learning. In 2020 International Conference on Robots & Intelligent System (ICRIS) (pp. 104-107). IEEE. https://doi.org/10.1109/ICRIS52159.2020.00034. DOI: https://doi.org/10.1109/ICRIS52159.2020.00034

Khafaga, D. S., Alhammad S. M., Magdi, A., Elkomy, O., Lashin, N. A., & Hosny, K. M. (2023). Securing transmitted color images using zero-watermarking and advanced encryption standard on Raspberry Pi. Computer Systems Science and Engineering, 4(2), 1967-1988. https://doi.org/10.32604/csse.2023.040345. DOI: https://doi.org/10.32604/csse.2023.040345

Lee, Y. H., Seo, Y. H., & Kim, D. W. (2019). Digital hologram watermarking by embedding Fresnel-diffracted watermark data. Optical Engineering, 58(6), 035102. https://doi.org/10.1117/1.OE.58.3.035102. DOI: https://doi.org/10.1117/1.OE.58.3.035102

Li, M., Liu, X., Wang, X., & Xiao, P. (2023a). Detecting building changes using multimodal Siamese multitask networks from very-high-resolution satellite images. IEEE Transactions on Geoscience and Remote Sensing, 61, 1-10. https://doi.org/10.1109/TGRS.2023.3290817. DOI: https://doi.org/10.1109/TGRS.2023.3290817

Li, Y., Li, J., Bhatti, U. A., Ma, J., Li, D., & Dong, F. (2023b). Robust zero-watermarking algorithm for medical images based on ORB and DCT. 26th ACIS International Winter Conference on Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed Computing (SNPD-Winter). https://doi.org/10.1109/SNPD-Winter57765.2023.10223992. DOI: https://doi.org/10.1109/SNPD-Winter57765.2023.10223992

Liu, Q. L., Yang, S. Q., Liu, J., Xiong, P. C., & Zhou, M. C. (2020). A discrete wavelet transform and singular value decomposition-based digital video watermark method. Applied Mathematical Modelling, 85, 273-293. https://doi.org/10.1016/j.apm.2020.04.015. DOI: https://doi.org/10.1016/j.apm.2020.04.015

Liu, Y. & Zhang, Z. (2021). Zero-watermarking algorithm based on DC component in DCT domain. 2021 International Conference on Electronic Information Engineering and Computer Science (EIECS). https://doi.org/10.1109/EIECS53707.2021.9588068.

Lin, T. Y., Maire, M., Belongie, S., Bourdev, L., Girshick, R., Hays, J., Perona, P., Ramanan, D., Zitnick, C. L., & Dollár, P. (2015). Microsoft COCO: Common objects in context. ArXiv. [En línea]. Disponible en: https://doi.org/10.48550/arXiv.1405.0312. Fecha de consulta: 15 de enero de 2025. DOI: https://doi.org/10.1007/978-3-319-10602-1_48

Shamia, D., Balasamy, K., & Suganyadevi, S. (2023). A secure framework for medical image by integrating watermarking and encryption through fuzzybased ROI selection. Journal of Intelligent & Fuzzy Systems, 44, 7449-7457. https://doi.org/10.3233JIFS-222618. DOI: https://doi.org/10.3233/JIFS-222618

Shang, C., Xue, Y., Liu, W. X., & Liu, Y. (2023). Visual image digital watermarking embedding algorithm combining 3D Boolean CNN and Arnold technology. IAENG International Journal of Computer Science, 50(4), 1221-1231.

Solorzano, C. & Tsai, D. M. (2023). Watermark detection in CMOS image sensors using cosine-convolutional semantic networks. IEEE Transactions on Semiconductor Manufacturing, 36(2), 279-290. https://doi.org/10.1109/TSM.2023.3245606. DOI: https://doi.org/10.1109/TSM.2023.3245606

Vizváry, L., Sopiak, D., Oravec, M., & Bukovčiková, Z. (2019). Image quality detection using the Siamese convolutional neural network. In 2019 International Symposium ELMAR (pp. 109-112). https://doi.org/10.1109/ELMAR.2019.8918678. IEEE DOI: https://doi.org/10.1109/ELMAR.2019.8918678

Wiggers, K. L., Britto, A. S., Heutte, L., Koerich, A. L., & Oliveira, L. S. (2019). Image retrieval and pattern spotting using Siamese neural network. 2019 International Joint Conference on Neural Networks (IJCNN). [En línea]. Disponible en: https://doi.org/10.1109/IJCNN.2019.8852197. Fecha de consulta: 10 de febrero de 2025. DOI: https://doi.org/10.1109/IJCNN.2019.8852197

Wu, J. Y., Huang, W. L., Zuo, M. J., & Gong, L. H. (2020). Optical watermark scheme based on singular value decomposition ghost imaging and particle swarm optimization algorithm. Journal of Modern Optics, 19(7), 1-13. https://doi.org/10.1080/09500340.2020.1810346. DOI: https://doi.org/10.1080/09500340.2020.1810346

Xiang, R., Liu, G., Li, K., Liu, J., Zhang, Z., & Dang, M. (2023). A zero-watermark scheme for medical image protection based on style feature and ResNet. Elsevier, 86(A), 1-11. https://doi.org/10.1016/j.bspc.2023.105127. DOI: https://doi.org/10.1016/j.bspc.2023.105127

Ye, H., Huang, X., Zhu, H., & Cao, F. (2025). An enhanced network with parallel graph node diffusion and node similarity contrastive loss for hypers-pectral image classification. Digital Signal Processing, 158, 104965. https://doi.org/10.1016/j.dsp.2024.104965 DOI: https://doi.org/10.1016/j.dsp.2024.104965

Zhang, Z. (2021). Zero-watermarking algorithm based on DC component in DCT domain. 2021 International Conference on Electronic Information Engineering and Computer Science (EIECS). [En línea]. Disponible en: https://doi.org/10.1109/EIECS53707.2021.9588068. Fecha de consulta: 10 de enero de 2025. DOI: https://doi.org/10.1109/EIECS53707.2021.9588068

Zhong, X. & Shih, F. Y. (2019). A robust image watermarking system based on deep neural networks. ArXiv. [En línea]. Disponible en: https://doi.org/10.48550/arXiv.1908.11331. Fecha de consulta: 15 de enero de 2025.

Published

2025-08-18

How to Cite

Arevalo-Ancona, R. E., Fragoso-Navarro, E., & Cedillo-Hernández, M. (2025). Robust zero-watermarking algorithm for image authentication using hybrid spatial-frequency features and siamese neural networks. CienciaUAT, 20(1). https://doi.org/10.29059/cienciauat.v20i1.1983

Issue

Section

Article

Categories

Received 2025-01-17
Accepted 2025-06-27
Published 2025-08-18

Similar Articles

1 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.