Efecto prebiótico de los Arabinoxilanos y los Arabinoxilo-Oligosacáridos y su relación con la promoción de la buena salud

Autores/as

  • Jorge Marquez-Escalante Centro de Investigación en Alimentación y Desarrollo, A.C., Coordinación de Tecnología de Origen Animal, carretera a La Victoria Km 0.6, Hermosillo, Sonora, México, C.P. 83304.
  • Elizabeth Carvajal-Millan Centro de Investigación en Alimentación y Desarrollo, A.C., Coordinación de Tecnología de Origen Animal, carretera a La Victoria Km 0.6, Hermosillo, Sonora, México, C.P. 83304. http://orcid.org/0000-0003-4390-7457
  • Yolanda L. López-Franco Centro de Investigación en Alimentación y Desarrollo, A.C., Coordinación de Tecnología de Origen Animal, carretera a La Victoria Km 0.6, Hermosillo, Sonora, México, C.P. 83304.
  • Elisa M. Valenzuela-Soto Centro de Investigación en Alimentación y Desarrollo, A.C., Coordinación de Ciencias de los Alimentos.
  • Agustín Rascón-Chu Centro de Investigación en Alimentación y Desarrollo, A.C., Coordinación de Tecnología de Alimentos de Origen Vegetal.

DOI:

https://doi.org/10.29059/cienciauat.v13i1.922

Palabras clave:

cereales, polisacáridos, oligosacáridos, prebióticos, probióticos

Resumen

Los arabinoxilanos son polisacáridos presentes en los granos de los cereales, y como tales, forman parte de la fibra dietética consumida por humanos y animales. La hidrólisis química o enzimática de los arabinoxilanos produce arabinoxilo-oligosacáridos, los cuales pueden estar ramificados o no, con arabinosa. El objetivo de este trabajo fue exponer el uso potencial de los arabinoxilanos y arabinoxilo-oligosacáridos, como prebióticos, y el efecto de su consumo en la promoción de la buena salud, al estimular selectivamente el crecimiento y actividad metabólica de la microbiótica colónica benéfica. La información generada indica que los arabinoxilanos y arabinoxilo-oligosacáridos actúan modificando la microbiota de manera selectiva, y estimulan la respuesta biológica, favoreciendo la buena salud del hospedero, por su efecto antiobesogénico, regulador de la glucosa, antioxidante, anticancerígeno e inmunomodulador, con resultados similares o mejores en relación a prebióticos reconocidos. No obstante, es necesario ampliar el conocimiento que se tiene de ellos para sustentar su aplicación en la industria alimentaria, farmacéutica o biomédica.

Biografía del autor/a

Jorge Marquez-Escalante, Centro de Investigación en Alimentación y Desarrollo, A.C., Coordinación de Tecnología de Origen Animal, carretera a La Victoria Km 0.6, Hermosillo, Sonora, México, C.P. 83304.

Posdoctorante

Elizabeth Carvajal-Millan, Centro de Investigación en Alimentación y Desarrollo, A.C., Coordinación de Tecnología de Origen Animal, carretera a La Victoria Km 0.6, Hermosillo, Sonora, México, C.P. 83304.

Investigador Titular, SNI II

Yolanda L. López-Franco, Centro de Investigación en Alimentación y Desarrollo, A.C., Coordinación de Tecnología de Origen Animal, carretera a La Victoria Km 0.6, Hermosillo, Sonora, México, C.P. 83304.

Investigador

Elisa M. Valenzuela-Soto, Centro de Investigación en Alimentación y Desarrollo, A.C., Coordinación de Ciencias de los Alimentos.

Investigador

 

Agustín Rascón-Chu, Centro de Investigación en Alimentación y Desarrollo, A.C., Coordinación de Tecnología de Alimentos de Origen Vegetal.

Investigador

Citas

Adam, A. V., Crespy, V., Levrat-Verny, M. A., Leenhardt, F., Leuillet, M., Demigne, C., and Remesy, C. (2002). The bioavailability of ferulic acid is governed primarily by the food matrix rather than its metabolism in intestine and liver in rats. Journal of Nutrition. 132(7): 1962-1968.

Adam, A. V., Levrat-Verny, M. A., Lopez, H. W., Leuillet, M., Demigne, C., and Remesy, C. (2001). Whole wheat and triticale flours with differing viscosities stimulate cecal fermentations and lower plasma and hepatic lipids in rats. Journal of Nutrition. 131(6): 1770-1776.

Asp, N. G., Björck, I., and Nyman, M. (1993). Physiological effects of cereal dietary fibre. Carbohydrate Polymers. 21(2-3): 183-187.

Ayala-Soto, F. E., Serna-Saldívar, S. O., García-Lara, S., and Pérez-Carrillo, E. (2014). Hydroxy-cinnamic acids, sugar composition and antioxidant capacity of arabinoxylans extracted from different maize fiber sources. Food hydrocolloids. 35: 471-475.

Ayala-Soto, F. E., Serna-Saldívar, S. O., and Welti-Chanes, J. (2017). Effect of arabinoxylans and laccase on batter rheology and quality of yeast-leavened gluten-free breads. Journal of Cereal Science. 73:10-17.

Belobrajdic, D. P., Bird, A. R., Conlon, A. M., Williams, B. A., Kang, S., McSweeney, C. S., …, and Topping, D. L. (2012). An arabinoxylan-rich fraction from wheat enhances caecal fermentation and protects colonocytes DNA against diet-induced damage in pigs. British Journal of Nutrition. 107(9): 1274-1282.

Birkett, A. and Cho, S. (2013). Cereal fiber and health: current knowledge. Cereal Food World. 58(6): 309-313.

Boll, E. V. J., Ekström, L. M. N. K., Courtin, C. M., Delcour, J. A., Nilsson, A. C., Björck, I. M. E., and Östman, E. M. (2016). Effects of wheat bran extract rich in arabinoxylan oligosaccharides and resistant starch on overnight glucose tolerance and markers of gut fermentation in healthy young adults. European Journal of Nutrition. 55 (4): 1661–1670.

Broekaert, W. F., Courtin, C. M., Verbeke, K., Van-de-Wiele, T., Verstraete, W., and Delcour, J. A. (2011). Prebiotic and other health-related effects of cereal-de-rived arabinoxylans, arabinoxylan-oligosaccharides, and xylooligosa-ccharides. Critical Reviews in Food Science and Nutrition. 51(2): 178-194.

Cao, L., Liu, X., Qian, T., Sun, G., Guo, Y., Chang, F., Zhou, S., and Sun, X. (2011). Antitumor and immuno-modulatory activity of arabinoxylans: a major constituent of wheat bran. International Journal of Biological Macromolecules. 48(1): 160-164.

Castellani, A. and Chalmers, A. J. (1919). XXXVI: Bacteroideae. In Manual of tropical medicine, third edition (pp. 959-960). New York, USA: Williams Wood & Co.

Christensen, K. l., Hedemann, M. S., Lære, H. N., Jørgensen, H., Mutt, S. J., Herzig, K. H., and Bach-Knudsen, K. E. (2013). Concentrated arabinoxilan but not concentrated b-glucan in wheat bread has similar effects on postprandial insulin as whole-grain rye in porto-arterial catheterized pigs. Journal of Agricultural and Food Chemistry. 61(32): 7760-7768.

Cloetens, L., De-Preter, V., Swennen, K., Broekaert, W., Courtin, C. M., Delcour, J. A., …, and Verbeke, K. (2008). Dose-response effect of arabinoxylooligo-saccharides on gastrointestinal motility and on colonic bacterial metabolism in healthy volunteers. Journal of the American College of Nutrition. 21(4): 512-518.

Courtin, C. M. and Delcour, J. A. (2002). Arabinoxylans and endoxylanases in wheat flour breadmaking. Journal of Cereal Science. 35(3): 225-243.

Damen, B., Verspreet, J., Pollet, A., Broekaert, W. F., Delcour, J. A., and Courtin, C. M. (2011). Prebiotics effects and intestinal fermentation of cereal arabinoxylans and arabinoxylan oligosaccharides in rats depend strongly on their structural properties and joint presence. Molecular Nutrition & Food Research. 55(12): 1862-1874.

Dexter, J. E., Izydorczyk, M. S., Marchylo, B. A., and Schlichting, J. M. (2005). Texture and colour of pasta containing mill fractions from hullless barley genotypes with variable content of amylose and fibre. In. S. P. Cauvin, S. S. Salmon, and L. S. Young (Eds.), Using Cereal Science and Technology for the Benefit of Consumers (pp. 489-493). Boca Raton, USA: CRC Press.

Ding, H. H., Cui, S. W., Goff, H. D., and Gong, J. (2015). Short-chain fatty acid profiles from flaxseed dietary fibres after in vitro fermentation of pig colonic digesta: Structure–function relationship. Bioactive Carbohydrates and Dietary Fibre. 6(2): 62-68.

Döring, C., Grossmann, I., Roth, M., Jekle, M., Koehler, P., and Becker, T. (2017a). Effect of rye bran particles on structure formation properties of rye dough and bread: bran particles and rye dough structure. Journal of Food Processing and Preservation. 41(4): e12998.

Döring, C., Hussein, M. A., Jekle, M., and Becker, T. (2017b). On the assessments of arabinoxylan localization and enzymatic modifications for enhanced protein networking and its structural impact on rye dough and bread. Food Chemistry. 229: 178–187.

Eeckhaut, V., Van-Immerseel, F., Dewulf, J., Pasmans, F., Haesebrouck, F., Ducatelle, R., …, and Broekaert, W. F. (2008). Arabinoxylooligosaccharides from wheat bran inhibit Salmonella colonization in broiler chickens. Poultry Science. 87(11): 2329-2334.

Fan, L., Ma, S., Wang, X., and Zheng, X. (2016). Improvement of Chinese noodle quality by supplementation with arabinoxylans from wheat bran. International Journal of Food Science & Technology. 51(3): 602–608.

FAO, Food and Agriculture Organization of the Nations (2017). Food and Agriculture Organization of the United Nations Statistics Division (FAOSTAT). [En línea]. Disponible en: www.fao.org/faostat/es/#data/QC. Fecha de consulta: 2 de octubre de 2017.

Femia, A. P., Salvadori, M., Broekaert, W. F., Francois, I. E., Delcour, J. A., Courtin, C. M., and Caderni, G. (2010). Arabinoxylan-oligosaccharides (AXOS) reduce preneoplastic lesions in the colon of rats treated with 1,2-dimethylhydrazine (DMH). European Journal of Nutrition. 49(2): 127-132.

Fernández, J., Redondo-Blanco, S., Gutiérrez-del-Río, I., Miguélez, E. M., Villar, C. J., and Lombó, F. (2016). Colon microbiota fermentation of dietary prebiotics towards short-chain fatty acids and their roles as anti-inflammatory and antitumour agents: A review. Journal of Functional Foods. 25: 511-522.

Fincher, G. B. and Stone, B. A. (1974). A water-soluble arabinogalactan-peptide from wheat endosperm. Australian Journal of Biological Sciences. 27(2): 117-132.

Gartner, E. (1888): Über die fleischvergiftung in Frankenhausen am Kyffhäuser und dererreger derselben. Korrespondenzblatt des Allgemeinen Ärztlichen Vereins von Thüringen. 17: 573-600.

Gibbons, N. E. and Murray, R. G. E. (1978). Proposals concerning the higher taxa of bacteria. International Journal of Systematic Bacteriology. 28(1): 1-6.

Gibson, G. R. and Roberfroid, M. B. (1995). Dietary modulation of the human colonic microbiota: Introducing the concept of prebiotics. Journal of Nutrition. 125(6): 1401-1412.

Grasten, S., Liukkonen, K. H., Chrevatidis, A., El-Nezami, H., Poutanen, K., and Mykkänen, H. (2003). Effects of wheat pentosan and inulin on the metabolic activity of fecal microbiota and on bowel function in healthyhumans. Nutrition Research. 23(11): 1503-1514.

Grootaert, C., Delcour, J. A., Courtin, C. M., Broekaert, W. F., Verstraete, W., and Van-de-Wiele, T. (2007). Microbial metabolism and prebiotic potency of arabinoxylan oligosaccharides in the human intestine. Trends in Food Science & Technology. 18(2): 64-71.

Grootaert, C., Van-den-Abbeele, P., Marzorati, M., Broekaert, W. F., Courtin, C. M., Delcour, J. A., and Van-de-Wiele, T. (2009). Comparison of prebiotic effects of arabinoxylan oligosaccharides and inulin in a simulator of the human intestinal microbial ecosystem. FEMS Microbiology Ecology. 69(2): 231-242.

Grossmann, I., Döring, C., Jekle, M., Becker, T., and Koehler, P. (2016). Compositional Changes and Baking Performance of Rye Dough As Affected by Microbial Transglutaminase and Xylanase. Journal of Agricultural and Food Chemistry. 64(28): 5751-5758.

Harding, S. V., Sapirstein, H. D., Rideout, T. C., Marinangeli, C. P. F., Dona, A. K. M., and Jones, P. J. H. (2014). Comsuption of wheat bran modified by autoclaving reduces fat mass in hamsters. European Journal of Nutrition. 53(3): 793-802.

Hartvigsen, M. L., Jeppesen, P. B., Lærke, H. N., Njabe, E. N., Bach-Knudsen, K. E., and Hermansen, K. (2013). Concentrated Arabinoxylan in wheat bread has beneficial effects as rye breads on glucose and change in gene expressions in isulin-sensitive tissues of zuckerdiabetic fatty (ZDF) rats. Journal of Agricultural and Food Chemistry. 61(21): 5054-5063.

Hedlund, B. P., Gosink, J. J., and Staley, J. T. (1997). Verrucomicrobia div. nov., a new division of the Bacteria containing three new species of Prosthecobacter. Antonie van Leeuwenhoek. 72(1): 29-38.

Hopkins, M. J., Englyst, H. N., Macfarlane, S., Furrie, E., Macfarlane, G. T., and McBain, A. J. (2003). Degradation of cross-linked and non-crosslinked arabi-noxylans by the intestinal microbiota in children. Applied and Environmental Microbiology. 69(11): 6354-6360.

Hughes, S. A., Shewry, P. R., Li, L., Gibson, G. R., Sanz, M. L., and Rastall, R. A. (2007). In vitro fermentation by human fecal microflora of wheat arabinoxylans. Journal of Agricultural and Food Chemistry. 55(11): 4589-4594.

Izydorczyk, M. S. and Biliaderis, C. G. (2007). Arabinoxylans: Technologically and nutritionally functional plant polysacharides. In C. G. Biliaderis and M. S. Izydorczyk (Eds.), Functional Food Carbohydrates (pp. 252-253). Boca Raton, USA: CRC Press.

Izydorczyk, M. S., Lagassé, S. L., Hatcher, D. W., Dexter, J. E., and Rossnagel, B. G. (2005). The enrichment of Asian noodles with fiber-rich fractions derived from roller milling of hull-less barley. Journal of the Science of Food and Agriculture. 85(12): 2094-2104.

Jones, J. M., Peña, R., Korczak, R., and Braun, H. J. (2015). CIMMYT series on carbohydrates, wheat, grains, and health: carbohydrates, grains, and wheat in nutrition and health: an overview. Part I. Role of carbohydrates in health. Cereal Foods Wold. 60(5): 224-233.

Kaneuchi, C., Benno, Y., and Mitsuoka, T. (1976). Clostridium coccoides, a new species from the feces of mice. International Journal of Systematic Bacteriology. 26(4): 482-486.

Katapodis, P., Vardakou, M., Kalogeris, E., Kekos, D., Macris, B. J., and Christakopoulos, P. (2003). Enzymic production of a feruloylated oligosaccha-ride with antioxidant activi-ty from wheat flour arabinoxylan. European Journal of Nutrition. 42(1): 55-60.

Kaur, A. R., Rumpagaporn, D. J., Patterson, P., and Hamaker, B. R. (2011). In vitro batch fecal fermentation comparison of gas and short-chainfatty acid production using “slowly fermentable” dietary fibers. Journal of Food Science. 76(5): H137-H142.

Kellow, N. J. and Walker, K. Z. (2018). Authorised EU health claim for arabinoxylan. In M. J. Sadler (Ed.), Foods, Nutrients and Food Ingredients with Authorised EU Health Claims (pp 201–218). Melbourne, Australia: Woodhead Publishing.

Kirchengast, S. (2014). Physical inactivity from the viewpoint of evolutionary medicine. Sports. 2(2): 34-50.

Koegelenberg, D. and Chimphango, A. F. A. (2017). Effects of wheat-bran arabinoxylan as partial flour replacer on bread properties. Food Chemistry. 221: 1606–1613.

Krieg, N. R., Ludwig, W., Euzéby, J., and Whitman, W. B. (2010). Phylum XIV. Bacteroidetes phyl. nov. In N. R. Krieg, J. T. Staley, D. R. Brown, B. P. Hedlund, B. J. Paster, N. L. …, and Parte, A. (Eds), Bergey’s Manual of Systematic Bacteriology (Second edition), (pp. 25-469). New York, USA: Springer.

Li, L., Wang, W., Zhou, S., Wang, L., Qian, H., Li, Y., …, and Qi, X. (2017). Effects of water-unextractable arabinoxylans on the physicochemical and rheological properties of traditional Chinese youtiao. International Journal of Food Science & Technology. 17: 1-7.

Lopez, H. W., Levrat, M. A., Guy, C., Messager, A., Demigné, C., and Rémésy, C. (1999). Effects of soluble corn bran arabinoxylans on cecal digestion, lipid metabolism, and mineral balance (Ca, Mg) in rats. The Journal of Nutritional Biochemistry. 10(9): 500-509.

Lu, Z. X., Walker, K. Z., Muir, J. G., Mascara, T., and O’Dea, K. (2000). Arabinoxylan fiber, a by product of wheat flour processing, reduces the postprandial glucose response in normoglycemic subjects. The American Journal of Clinical Nutrition. 71(5): 1123-1128.

Maki, K. C., Gibson, G. R., Dickman, R. S., Kendall, C. W. C., Chen, O., Costabile, A., …, and Zello, G. A. (2012). Digestive and physiologic effects of a wheat bran extract, arabinoxylan-oligosaccharide, in breakfast cereal. Nutrition. 28(11): 1115-1121.

Malunga, L. N. and Beta, T. (2015). Antioxidant capacity of water-extractable arabinoxylan from commercial barley, wheat, and wheat fractions. Cereal Chemistry. 92(1): 29-36.

Malunga, L. N., Izydorczyk, M., and Beta, T. (2017). Effect of water-extractable arabinoxylans from wheat aleurone and bran on lipid peroxidation and factors influencing their antioxidant capacity. Bioactive Carbohydrates and Dietary Fibre. 10: 20-26.

Marconi, E., Graziano, M., and Cubadda, R. (2000). Composition and utilization of barley pearling by-products for making functional pastas rich in dietary fiber and β-glucans. Journal of Cereal Science. 77(2): 133-139.

Meile, L., Ludwig, W., Rueger, U., Gut, C., Kaufmann, P., Dasen, G., …, and Teuber, T. (1997). Bifidobacterium lactis sp. nov., a moderately oxygen tolerant species isolated from fermented milk. Sysematic and Applied Microbiology. 20: 57-64.

Messia, M. C., Reale, A., Maiuro, L., Candigliota, T., Sorrentino, E., and Marconi, E. (2016). Effects of prefermented wheat bran on dough and bread characteristics. Journal of Cereal Science. 69: 138–144.

Neyrinck, A. M., Possemiers, S., Druart, C., Van-de-Wiele, T., De-Backer, F., Cani, P. D., Larondelle, Y., …, and Delzenne, N. M. (2011). Prebiotic effects of wheat arabinoxylan related to the increase in bifidobacteria, Roseburia and Bacteroides/Prevotella in dietinduced obese mice. PLoSOne. 6(6): e20944.

Neyrinck, A. M., Van-Hée, V. F., Piront, N., De-Backer, F., Toussaint, O., Cani, P. D., and Delzenne, N. M. (2012). Wheat-derived arabinoxylan oligosaccharides with prebiotic effect increase satietogenic gut peptides and reduce metabolic endotoxemia in diet-induced obese mice. Nutrition & Diabetes. 2(1): 1-9.

Nordlund, E., Aura, A. M., Mattila, I., Kössö, T., Rouau, X., and Poutanen, K. (2012). Formation of phenolic microbial metabolites and short-chain fatty acids from rye, wheat, and oat bran and their fractions in the metabolical in in vitro colon model. Journal of Agricultural and Food Chemistry. 60(33): 8134-8145.

Ogawa, K., Takeuchi, M., and Nakamura, N. (2005). Immunological effects of partially hydrolyzed arabinoxylan from corn husk in mice. Bioscience, Biotechnology, and Biochemistry. 69(1): 19-25.

Orla-Jensen, S. (1924). La classification des batteries lactiques. Le Lait. 4: 468-474.

Ou, S. Y., Jackson, G. M., Jiao, X., Chen, J., Wu, J. Z., and Huang, X. S. (2007). Protection against oxidative stress in diabetic rats by wheat bran feruloyl oligosaccharides. Journal of Agricultural and Food Chemistry. 55(8): 3191-3195.

Patel, S. and Goyal, A. (2012). The current trends and future perspectives of prebiotics research: A review. 3 Biotech. 2(2): 115-125.

Pérez-Martínez, A., Valentín, J., Fernández, L., Hernández-Jiménez, E., López-Collazo, E., Zerbes, P., …, and Díaz, M. Á. (2015). Arabinoxylan rice bran (MGN-3/Biobran) enhances natural killer cellmediated cytotoxicity against neuroblastoma in Vitro and in Vivo. Cytotherapy. 17(5): 601–612.

Prévot, A. R. (1938). Études de systématique bactérienne. III. Invalidité du genre Bacteroides Catellani et Chalmers démembrement et reclassification. In G. Masson (Ed.), Annales de l’lnstitut Pasteur. (pp. 285-307). Paris, Francia: Institut Pasteur.

ProDigest, Laboratory of Microbiol Ecology and Technology, Ghent University (2016). Shime and Shime, in Gastrointestinal Expertise. ProDigest. [En línea]. Disponible en: www.prodigest.eu/en/technology/shime-and-mshime. Fecha de consulta: 2 de octubre de 2017.

Reis, S. F., Gullon, B., Gullon, P., Ferreira, S., Maia, C. J., Alonso, J. L., …, and Abu-Ghannam, N. (2014). Evaluation of the prebiotic potential of arabinoxylans frombrewer’s spent grain. Applied Microbiology and Biotechnology. 98(22): 9365-9373.

Reuter, G. (1963). Vergleichende untersuchunge uberdie Bifidus-flora im sauglings und erwashenenstuhlz. Zentralblatt fur Bakteriologie, Parasitenkunde, Infektionskran-kheitenund Hygiene. Abteilung I. 191: 486-507.

Rowland, I. R. and Mallet. A. K. (1986). Dietary fiber and the gut microflora. Thier effects on toxicity in “new concepts and development in toxicology.” In P. L. Chambers, P. Gehring, and F. Sakai (Eds.), New concepts and developments in toxicology (pp. 125–138). B. V. London: Elsevier Science Publiser.

Rouau, X., El-Hayek, M. L., and Moreau, D. (1994). Effect of a enzyme preparation containing pentosanases on the bread-making quality of flours in relation to changes in pentosan properties. Journal of Cereal Science. 19(3): 259-272.

Saeed, F., Arshad, M. U., Pasha, I., Suleria, H. A. R., Arshad, M. S., Qamar, A., …, and Sultan, S. (2015). Effect of arabinoxylan and arabinogalactan on textural attributes of bread. Journal of Fodd Processing and Preservation. 39(6): 1070-1088.

Salden, B. N., Troost, F. J., Wilms, E., Truchado, P., Vilchez-Vargas, R., Pieper, D. H., …, and Masclee, A. A. (2018, en prensa). Reinforcement of intestinal epithelial barrier by arabinoxylans in overweight and obese subjects: A randomized controlled trial: Arabinoxylans in gut barrier. Clinical Nutrition. DOI: 10.1016/j.clnu. 2017.01.024.

Samuelsen, A. B., Rieder, A., Grimmer, S., Michaelsen, T. E., and Knutsen, S. H. (2011). Immunomodulatory activity of dietary fiber: arabinoxylan and mixed-linked Beta-glucan isolated from barley show modest activities in vitro. International Journal of Molecular Sciences. 12(1): 570-587.

Sandberg, J. C., Björck, I. M. E., and Nilsson, A. C. (2017). Effects of whole grain rye, with and without resistant starch type 2 supplementation, on glucose tolerance, gut hormones, inflammation and appetite regulation in an 11–14.5 hour perspective; a randomized controlled study in healthy subjects. Nutrition Journal. 16(1): 25.

Sarma, S. M., Singh, D. P., Singh, P., Khare, P., Mangal, P., Singh, S., …, and Kondepudi, K. K. (2018). Finger millet arabinoxylan protects mice from highfat diet induced lipid derangements, inflammation, endotoxemia and gut bacterial dysbiosis. International Journal of Biological Macromolecules. 106: 994-1003.

Sanchez, J. I., Marzorati, M., Grootaert, C, M., Baran, M., Van-Craeyveld, V., Courtin, C. M., and Van-de-Wiele, T. (2009). Arabinoxylan-oligosaccharides (AXOS) affect the protein/carbohydrate fermentation balance and microbial population dynamics of the simulator of human intestinal microbial ecosystem. Microbial Biotechnology. 2(1): 101-113.

Saulnier, L., Sado, P. E., Branlard, G., Charmet, G., and Guillon, F. (2007). Wheat arabinoxylans: Exploiting variation in amount and composition to develop enhanced varieties. Journal of Cereal Science. 46(3): 261-281.

Sato, K., Ohuchi, A., Sook, S. H., Toyomizu, M., and Akiba, Y. (2003). Changes in mRNA expression of 3-hydroxy-3-methylglutaryl coenzyme A reductase and cholesterol 7 alphahydroxylase in chickens. Biochimica et Biophysica Acta (BBA) - Gene Structure and Expression. 1630(2–3): 96-102.

Shah, H. N. and Collins, D. M. (1990). Prevotella, a new genus to include Bacteroides melaninogenicus and related species formerly classified in the genus Bacteroides. International Journal of Systematic Bacteriology. 40(2): 205-208.

Singh, D. P., Khare, P., Zhu, J., Kondepudi, K. K., Singh, J., Baboota, R. K., …, and Bishnoi, K. (2015). A novel cobiotic-based preventive approach against high-fat diet-induced adiposity, nonalcoholic fatty liver and gut derangement in mice. International Journal Of Obesity. 40: 487.

Smith, M. M. and Hartley, R. D. (1983). Ocurrence and nature of ferulic acid substitution of cellwall polysaccharides in graminaceous plants. Carbohydrate Research. 118: 65-80.

Stanton, B. and Savage, D. C. (1983). Roseburia cecicola gen. nov., sp. nov., a motile, obligately anaerobic bacterium from a mouse cecum. International Journal of Systematic Bacteriology. 33(3): 618-627.

Sugawara, M., Suzuki, K., Endo, K., Kumemura, M., Takeuchi, M., and Mitsuoka, T. (1990). Effect of the dietary supplementation of corn hemicellulose on fecal flora and bacterial enzyme activities in human adults. Agricultural and Biological Chemistry. 54(7): 1683-1688.

Swennen, K., Courtin, C. M., Lindemans, G. C. J. E., and Delcour, J. A. (2006). Large-scale production and characterisation of wheat bran arabinoxylooligosac-charides. Journal of the Science of Food and Agriculture. 86(11): 1722-1731.

Tissier, H. (1900). Recherches sur la flora intestinale des nourrissons. Faculté de médecine. Paris, France: Dissertation. 253 Pp.

Tong, L. T., Zhong, K., Liu, L., Qiu, J., Guo, L., Zhou, X., Cao, L., and Zhou, S. (2014). Effects of dietary wheat bran arabinoxylans on cholesterol metabolism of hypercholesterolemic hamsters. Carbohydrate Polymers. 112: 1-5.

Topping, D. L. and Clifton, P. M. (2001). Short-chain fatty acids and human colonic function: roles of resistant starch and nonstarch polysaccharides.Physiological Reviews. 81(3): 1031-1064.

Van-Craeyveld, V., Swennen, K., Dornez, E., Van-de-Wiele, T., Marzorati, M., Verstraete, W., …, and Courtin, C. M. (2008). Structurally different wheat-derived arabinoxylooligosaccharides have different prebiotic and fermentation properties in rats. Journal of Nutrition. 138(12): 2348-2355.

Van-den-Abbeele, P., Gérard, P., Rabot, S., Bruneau, A., El-Aidy, S., Derrien, M., …, and Possemiers, S. (2011). Arabinoxylans and inulin differentially modulate the mucosal and luminal gut microbiota and mucin-degradation in humanized rats. Environmental Microbiology. 13(10): 2667-2680.

Van-den-Ende, W., Peshev, D., and De-Gara, L. (2011). Disease prevention by natural antioxidants and prebiotics acting as ROS scavengers in the gastrointestinal tract. Trends in Food Science & Technology. 22(12): 689-697.

Vardakou, M., Palop, C. N., Christakopoulos, P., Faulds, C. B., Gasson, M. A., and Narbad, A. (2008). Evaluation of the prebiotic properties of wheat arabinoxylan fractions and induction of hydrolase activity in gut microflora. International Journal of Food Microbiology. 123(1): 166-170.

Veillon, A. and Zuber, A. (1898). Recherches sur quelques microbes strictment anakrobies et leur role en pathologie. Archives de Médicine Expérimentale d ‘Anatomie Pathologique. 10: 517-545.

Veenashri, B. R. and Muralikrishna, G. (2011). In vitro anti-oxidant activity of xylo-oligosaccharides derived from cereal and millet brans – A comparative study. Food Chemistry. 126(3): 1475-1481.

Vogel, B., Gallaher, D. D., and Bunzel, M. (2012). Influence of cross-linked arabinoxylans on the post-prandial blood glucose response in rats. Journal of Agricultural and Food Chemistry. 60(15): 3847-3852.

Wallace, B. D., Roberts, A. B., Pollet, R. M., Ingle, J. D., Biernat, K. A., Pellock, S. J., …, and Dollinger, M. (2015). Structure and Inhibition of Microbiome β-Glucuronidases Essential to the Alleviation of Cancer Drug Toxicity. Chemistry & Biology. 22(9): 1238–1249.

Walton, G. E., Lu, C., Trogh, I., Arnaut, F., and Gibson, G. R. (2012). A ramdomised, double-blind, placebo controlled cross-over study to determine the gastrointestinal effects of consumption of arabinoxylan-oligosaccharides enriched bread in healthy volunteers. Nutrition Journal. 11(1): 36.

Wang, P., Tao, H., Jin, Z., and Xu, X. (2016). Impact of water extractable arabinoxylan from rye bran on the frozen steamed bread dough quality. Food Chemistry. 200: 117-124.

WHO, World Health Organization (2017). World Health Statistics 2017: Monitoring health for the SDGs: sustainable development goals. [En linea]. Disponible en: www.int/gho/publications/world_helath_statistics/2017/en/. Fecha de consulta: 16 de enero de 2018.

Williams, B. A., Zhang, D., Lisle, A. T., Mikkelsen, D., McSwe, C. S., Kang, S., …, and Gidley, M. J. (2016). Soluble arabinoxylan enhances large intestinal microbial health biomarkers in pigs fed a red meatcontaining diet. Nutrition. 32(4): 491-497.

Yacoubi, N., Van-Immerseel, F., Ducatelle, R., Rhayat, L., Bonnin, E., and Saulnier, L. (2016). Water-soluble fractions obtained by enzymatic treatment of wheat grains promote short chain fatty acids production by broiler cecal microbiota. Animal Feed Science and Technology. 218: 110-119.

Yadav, M. P. and Hicks, K. B. (2018, en prensa). Isolation, characterization and functionalities of biofiber gums isolated from grain processing by-products, agricultural residues and energy crops. Food Hydrocolloids. DOI: 10.1016/j.foodhyd.2017.04.009.

Yadav, M. P., Kale, M. S., Hicks, K. B., and Hanah, K. (2017). Isolation, characterization and the functional properties of cellulosic arabinoxylan fiber isolated from agricultural processing by-products, agricultural residues and energy crops. Food Hydrocolloids. 63: 545-551.

Zhang, Z., Smith, C. J., Li, W., and Ashworth, J. (2016). Characterization of nitric oxide modulatory activities of alkaline-extracted and enzymaticmodified arabinoxylans from corn bran in cultured human monocytes. Journal of Agricultural and Food Chemistry. 64(43): 8129-8137.

Zhang, D., Williams, B. A., Mikkelsen, D., Li, X., Keates, H. L., Lisle, A. T., …, and Gidley, M. J. (2015). Soluble arabinoxylan alters digesta flow and protein digestion of red meat-containing diets in pigs. Nutrition. 31(9): 1141-1147.

Zhou, S., Liu, X., Guo, Y., Wang, Q., Peng, D., and Cao, L. (2010). Comparison of the immunological activities of arabinoxylans from wheat bran with alkali and xylanase-aided extraction. Carbohydrate Polymers. 81(4): 784-789.

Publicado

2018-07-19

Cómo citar

Marquez-Escalante, J., Carvajal-Millan, E., López-Franco, Y. L., Valenzuela-Soto, E. M., & Rascón-Chu, A. (2018). Efecto prebiótico de los Arabinoxilanos y los Arabinoxilo-Oligosacáridos y su relación con la promoción de la buena salud. CienciaUAT, 13(1), 146-164. https://doi.org/10.29059/cienciauat.v13i1.922

Número

Sección

Biotecnología y Ciencias Agropecuarias