¿Los protocolos experimentales son un símil real de la diabetes humana?

Autores/as

  • María Luisa Moreno-Cortés Universidad Veracruzana, Instituto de Investigaciones Biológicas, Área de Biomedicina, Xalapa, Veracruz, México.
  • Ana G. Gutiérrez-García Universidad Veracruzana, Instituto de Neuroetología, Laboratorio de Neurofarmacología, av. Dr. Luis Castelazo s/n, col. Industrial Las ánimas, Xalapa, Veracruz, México, C. P. 91190.
  • Carlos M. Contreras Universidad Nacional Autónoma de México, Instituto de Investigaciones Biomédicas, Unidad Periférica-Xalapa, Ciudad de México, México

DOI:

https://doi.org/10.29059/cienciauat.v14i2.1289

Palabras clave:

modelos experimentales, diabetes, aloxana, estreptozotocina, hiperglucemia

Resumen

Para el estudio de la diabetes se dispone de diversas estrategias metodológicas en modelos animales, tales como, técnicas quirúrgicas, modificaciones dietéticas, incluso manipulación genética y la administración de fármacos específicos, por su toxicidad. En animales, la diabetes experimental se logra con el uso de fármacos, como la aloxana o la estreptozotocina, los cuales producen daño irreversible en las células-pancreáticas, aunque causan una alta mortalidad, debido a la cetosis asociada al daño agudo de estas células pancreáticas. El objetivo de este trabajo fue analizar los protocolos farmacológicos y otras estrategias disponibles, para determinar si la diabetes experimental realmente emula la diabetes humana. La diabetes es un proceso progresivo y crónico, en el que la mayor parte de las alteraciones clínicas son consecuencia, en el largo plazo, de alteraciones micro y macrovasculares. Por ello, es conveniente diferenciar entre los efectos de una hiperglucemia aguda, con aquellos que se observan cuando la hiperglucemia se prolonga a lo largo del tiempo, a fin de establecer analogías, entre el modelo experimental animal, con el síndrome diabético humano, mediante datos de laboratorio y de tipo clínico, de uso habitual en el diagnóstico y manejo de la diabetes humana.

Biografía del autor/a

María Luisa Moreno-Cortés, Universidad Veracruzana, Instituto de Investigaciones Biológicas, Área de Biomedicina, Xalapa, Veracruz, México.

Coordinadora del área de biomedicina 

Instituto de Investigaciones Biológicas

Universidad Veracruzana

Citas

Acharjee, S., Ghosh, B., Al-Dhubiab, B. E., and Nair, A. B. (2013). Understanding type 1 diabetes: etiology and models. Canadian Journal of Diabetes. 37(4): 269-276. DOI: https://doi.org/10.1016/j.jcjd.2013.05.001

Al-Awar, A., Kupai, K., Veszelka, M., Szűcs, G., Attieh, Z., Murlasits, Z., …, and Varga, C. (2016). Experimental diabetes mellitus in different animal models. Journal of Diabetes Research. 2016: 9051426. DOI: https://doi.org/10.1155/2016/9051426

Arias-Díaz, J. and Balibrea, J. (2007). Modelos animales de intolerancia a la glucosa y diabetes tipo 2. Nutrición Hospitalaria. 22(2): 160-168.

Barbour, L. A. (2019). Metabolic culprits in obese pregnancies and gestational diabetes mellitus: big babies, big twists, big picture: The 2018 Norbert Freinkel Award Lecture. Diabetes Care. 42(5): 718-726. DOI: https://doi.org/10.2337/dci18-0048

Barriere, D. A., Noll, C., Roussy, G., Lizotte, F., Kessai, A., Kirby, K., ..., and Sarret, P. (2018). Combination of high-fat/high-fructose diet and low-dose streptozotocin to model longterm type-2 diabetes complications. Scientific Reports. 8(1): 424. DOI: https://doi.org/10.1038/s41598-017-18896-5

Benomar, Y. and Taouis, M. (2019). Molecular mechanisms underlying obesity-induced hypothalamic inflammation and insulin resistance: pivotal role of resistin/TLR4 pathways. Frontiers in Endocrinology. 10: 140. DOI: https://doi.org/10.3389/fendo.2019.00140

Boles, A., Kandimalla, R., and Reddy, P. H. (2017). Dynamics of diabetes and obesity: Epidemiological perspective. Biochimical et Biophysica Acta Molecular Basis Disease. 1863(5): 1026-1036. DOI: https://doi.org/10.1016/j.bbadis.2017.01.016

Brito-Casillas, Y., Melián, C., and Wägner, A. M. (2016). Study of the pathogenesis and treatment of diabetes mellitus through animal models. Endocrinololgía y Nutrición. 63(7): 345-353. DOI: https://doi.org/10.1016/j.endonu.2016.03.011

Burbridge, S., Stewart, I., and Placzek, M. (2016). Development of the neuroendocrine hypothalamus. Comprehensive Physiology. 6(2): 623-643. DOI: https://doi.org/10.1002/cphy.c150023

Buyukdere, Y., Gulec, A., and Akyol, A. (2019). Cafeteria diet increased adiposity in comparison to high fat diet in young male rats. PeerJ. 7: e6656. DOI: https://doi.org/10.7717/peerj.6656

Carrero, J. A., McCarthy, D. P., Ferris, S. T., Wan, X., Hu, H., Zinselmeyer, B. H., …, and Unanue, E. R. (2017). Resident macrophages of pancreatic islets have a seminal role in the initiation of autoimmune diabetes of NOD mice. Proceedings of the National Academy of Sciences of the United States of America. 114(48): E10418-E10427. DOI: https://doi.org/10.1073/pnas.1713543114

Castell-Auví, A., Cedó, L., Pallarès, V., Blay, M., Ardévol, A., and Pinent, M. (2012). The effects of a cafeteria diet on insulin production and clearance in rats. The British Journal of Nutrition. 108(7): 1155-1162. DOI: https://doi.org/10.1017/S0007114511006623

Chan, M. (2017). Obesity and Diabetes: The Slow-Motion Disaster. Milbank Q. 95(1): 11-14. DOI: https://doi.org/10.1111/1468-0009.12238

Chen, Y. W., Fiscella, K. A., Bacharach, S. Z., and Calu, D. J. (2014). Effect of cafeteria diet history on cue-, pellet-priming-, and stress-induced reinstatement of food seeking infemale rats. PloS One. 9(7): e102213. DOI: https://doi.org/10.1371/journal.pone.0102213

Chittka, D., Banas, B., Lennartz, L., Putz, F. J., Eidenschink, K., Beck, S., …, and Banas, M. C. (2018). Long-term expression of glomerular genes in diabetic nephropathy. Nephrology, Dialysis, Transplantation. 33(9): 1533-1544. DOI: https://doi.org/10.1093/ndt/gfx359

Churruca, I., Portillo, M. P., Casis, L., Gutierrez, A., Macarulla, M. T., and Echevarria, E. (2008). Effects of fluoxetine administration on hypothalamic melanocortin system in obese Zucker rats. Neuropeptides. 42(3): 293-299. DOI: https://doi.org/10.1016/j.npep.2008.02.002

Contreras, C. M. and Gutiérrez-García, A. G. (2017). Cognitive impairment in diabetes and poor glucose utilization in the intracellular neural milieu. Med Hypotheses. 104: 160-165. DOI: https://doi.org/10.1016/j.mehy.2017.06.007

Contreras, C. M., Gutiérrez-García, A. G., and Moreno-Cortés, M. L. (2019). Responsivity of lateral septum-mPFC connections in alloxan-induced hyperglycemia. Behavioural Brain Research. 368: 111919. DOI: https://doi.org/10.1016/j.bbr.2019.111919

Daryabor, G., Kabelitz, D., and Kalantar, K. (2019). An update on immune dysregulation in obesity-related insulin resistance. Scandinavian Journal of Immunology. 89(4): e12747. DOI: https://doi.org/10.1111/sji.12747

Drel, V. R., Mashtalir, N., Ilnytska, O., Shin, J., Li, F., Lyzogubov, V. V., and Obrosova, I. G. (2006). The leptindeficient (ob/ob) mouse: a new animal model of peripheral neuropathy of type 2 diabetes and obesity. Diabetes. 55(12): 3335-3343. DOI: https://doi.org/10.2337/db06-0885

Dunn, J. S., Sheehan, H. L., and McLetchie, N. G. B. (1943). Necrosis of islets of Langerhans produced experimentally. Lancet. 241 (6242): 484-487. DOI: https://doi.org/10.1016/S0140-6736(00)42072-6

Federiuk, I. F., Casey, H. M., Quinn, M. J., Wood, M. D., and Ward, W. K. (2004). Induction of type-1 diabetes mellitus in laboratory rats by use of alloxan: route of administration, pitfalls, and insulin treatment. Comparative Medicine. 54(3): 252-257.

Flores, Y. N., Contreras, Z. A., Ramirez-Palacios, P., Morales, L. S., Edwards, T. C., Gallegos-Carrillo, K., …, and Patrick, D. L. (2019). Increased prevalence of psychosocial, behavioral, and socio-environmental risk factors among over-weight and obese youths in Mexico and the United States. International Journal of Environmental Research and Public Health. 16(9): E1534. DOI: https://doi.org/10.3390/ijerph16091534

Fu, Z., Gilbert, E. R., and Liu, D. (2013). Regulation of insulin synthesis and secretion and pancreatic Beta-cell dysfunction in diabetes. Current Diabetes Reviews. 9(1): 25-53. DOI: https://doi.org/10.2174/157339913804143225

Geiss, L. S., Kirtland, K., Lin, J., Shrestha, S., Thompson, T., Albright, A., and Gregg, E. W. (2017). Changes in diagnosed diabetes, obesity, and physical inactivity prevalence in US counties, 2004-2012. PLoS One. 12(3): e0173428. DOI: https://doi.org/10.1371/journal.pone.0173428

Gerber, P. A. and Rutter, G. A. (2017). The role of oxidative stress and hypoxia in pancreatic beta-cell dysfunction in diabetes mellitus. Antioxidants & Redox Signaling. 26(10): 501-518. DOI: https://doi.org/10.1089/ars.2016.6755

Gómez-Smith, M., Karthikeyan, S., Jeffers, M. S., Janik, R., Thomason, L. A., Stefanovic, B., and Corbett, D. (2016). A physiological characterization of the Cafeteria diet model of metabolic syndrome in the rat. Physiology and Behavior. 167: 382-391. DOI: https://doi.org/10.1016/j.physbeh.2016.09.029

Grillo, C. A., Piroli, G. G., Lawrence, R. C., Wrighten, S. A., Green, A. J., Wilson, S. P., ..., and Reagan, L. P. (2015). Hippocampal insulin resistance impairs spatial learning and synaptic plasticity. Diabetes. 64(11): 3927-3936. DOI: https://doi.org/10.2337/db15-0596

Grillo, C. A., Woodruff, J., Macht, V. A., and Reagan, L. P. (2019). Insulin resistance and hippocampal dysfunction: Disentangling peripheral and brain causes from consequences. Experimental Neurology. 318: 71-77. DOI: https://doi.org/10.1016/j.expneurol.2019.04.012

Guex, C. G., Reginato, F. Z., de-Jesus, P. R., Brondani, J. C., Lopes, G. H. H., and Bauermann, L. F. (2019). Antidiabetic effects of Olea europaea L. leaves in diabetic rats induced by high-fat diet and low-dose streptozotocin. Journal of Ethnopharmacology. 235: 1-7. DOI: https://doi.org/10.1016/j.jep.2019.02.001

Gutiérrez, A., Saracibar, G., Casis, L., Echevarria, E., Rodriguez, V. M., Macarulla, M. T., ..., and Portillo, M. P. (2002). Effects of fluoxetine administration on neuropeptide y and orexins in obese zucker rat hypothalamus. Obesity Research. 10(6): 532-540. DOI: https://doi.org/10.1038/oby.2002.72

Harwood, H. J., Listrani, P., and Wagner, J. D. (2012). Nonhuman primates and other animal models in diabetes research. Journal of Diabetes Science and Technology. 6(3): 503-514. DOI: https://doi.org/10.1177/193229681200600304

Hascup, E. R., Broderick, S. O., Russell, M. K., Fang, Y., Bartke, A., Boger, H. A., and Hascup, K. N. (2019). Dietinduced insulin resistance elevates hippocampal glutamate as well as VGLUT1 and GFAP expression in AbetaPP/PS1 mice. Journal of Neurochemistry. 148(2): 219-237. DOI: https://doi.org/10.1111/jnc.14634

Heyne, A., Kiesselbach, C., Sahún, I., McDonald, J., Gaiffi, M., Dierssen, M., and Wolffgramm, J. (2009). An animal model of compulsive food-taking behaviour. Addiction Biology. 14(4): 373-383. DOI: https://doi.org/10.1111/j.1369-1600.2009.00175.x

Hugés-Hernandorena, B., Rodríguez-García, J. C., Rodríguez-González, J. C., and Marrero-Rodríguez, M. T. (2002). Animales de experimentación como modelos de diabetes mellitus tipo 2. Revista Cubana de Endocrinología. 13(2): 160-168.

Igel, M., Becker, W., Herberg, L., and Joost, H. G. (1997). Hyperleptinemia, leptin resistance, and polymorphic leptin receptor in the New Zealand obese mouse. Endocrinology. 138(10): 4234-4239. DOI: https://doi.org/10.1210/endo.138.10.5428

Kahn, S. E., Hull, R. L., and Utzschneider, K. M. (2006). Mechanisms linking obesity to insulin resistance and type 2 diabetes. Nature. 444(7121): 840-846. DOI: https://doi.org/10.1038/nature05482

Karatas, F., Sahin, S., Aytekin, A., Hacioglu, M. B., Imamoglu, G. I., and Altinbas, M. (2018). Durable complete response with a short course of streptozotocin plus doxorubicin combination in malignant metastatic insulinoma. Journal of Cancer Research and Therapeutics. 14(5): 1149-1151. DOI: https://doi.org/10.4103/0973-1482.188293

Kaur, M., Bedi, O., Sachdeva, S., Reddy, B. V. K. K., and Kumar, P. (2014). Rodent animal models: from mild to advanced stages of diabetic nephropathy. Inflammopharmacology. 22(5): 279-293. DOI: https://doi.org/10.1007/s10787-014-0215-y

Kim, B., Elzinga, S. E., Henn, R. E., McGinley, L. M., and Feldman, E. L. (2019). The effects of insulin and insulin-like growth factor I on amyloid precursor protein phosphorylation in in vitro and in vivo models of Alzheimer’s disease. Neurobiology of Disease. 132: 104541. DOI: https://doi.org/10.1016/j.nbd.2019.104541

Lascar, N., Altaf, Q. A., Raymond, N. T., Broen, J., Pattison, H., Barnett, A., ..., and Bellary, S. (2019). Phenotypic characteristics and risk factors in a multi-ethnic cohort of young adults with type 2 diabetes. Current Medical Research and Opinion. 1-8. DOI: https://doi.org/10.1080/03007995.2019.1638239

Lenzen, S. (2008). The mechanisms of alloxan- and streptozotocin-induced diabetes. Diabetologia. 51(2): 216-226. DOI: https://doi.org/10.1007/s00125-007-0886-7

Lewis, A. R., Singh, S., and Youssef, F. F. (2019). Cafeteria-diet induced obesity results in impaired cognitive functioning in a rodent model. Heliyon. 5(3): e01412. DOI: https://doi.org/10.1016/j.heliyon.2019.e01412

Liljedahl, L., Norlin, J., McGuire, J. N., and James, P. (2017). Effects of insulin and the glucagon-like peptide 1 receptor agonist liraglutide on the kidney proteome in db/db mice. Physiology Reproduction. 5(6): e13187. DOI: https://doi.org/10.14814/phy2.13187

Lucchesi, A. N., Cassettari, L. L., and Spadella, C. T. (2015). Alloxan-induced diabetes causes morphological and ultrastructural changes in rat liver that resemble the natural history of chronic fatty liver disease in humans. Journal of Diabetes Research. 2015: 494578. DOI: https://doi.org/10.1155/2015/494578

Lucchesi, A. N., Freitas, N. T., Cassettari, L. L., Marques, S. F., and Spadella, C. T. (2013). Diabetes mellitus triggers oxidative stress in the liver of alloxan-treated rats: a mechanism for diabetic chronic liver disease. Acta Cirurgica Brasileira. 28(7): 502-508. DOI: https://doi.org/10.1590/S0102-86502013000700005

Minkowski, O. and Bretzel, R. G. (2002). Further reports on diabetes mellitus after the extirpation of the pancreas. Journal of Molecular Medicine (Berlin, Germany). 80(1): 3-4. DOI: https://doi.org/10.1007/s00109-001-0314-2

Moreno-Cortés, M. L., Gutiérrez-García, A. G., Guillén-Ruiz, G., Romo-González, T., and Contreras, C. M. (2016). Widespread blunting of hypothalamic and amygdala-septal activity and behavior in rats with long-term hyperglycemia. Behavioural Brain Research. 310: 59-67. DOI: https://doi.org/10.1016/j.bbr.2016.05.013

Mtintsilana, A., Micklesfield, L. K., Chorell, E., Olsson, T., and Goedecke, J. H. (2019). Fat redistribution and accumulation of visceral adipose tissue predicts type 2 diabetes risk in middle-aged black South African women: a 13-year longitudinal study. Nutrition and Diabetes. 9(1): 12. DOI: https://doi.org/10.1038/s41387-019-0079-8

Necyk, C. and Zubach-Cassano, L. (2017). Natural health products and diabetes: a practical review. Canadian Journal of Diabetes. 41(6): 642-647. DOI: https://doi.org/10.1016/j.jcjd.2017.06.014

Norwitz, N. G., Mota, A. S., Norwitz, S. G., and Clarke, K. (2019). Multi-Loop model of Alzheimer disease: an integrated perspective on the Wnt/GSK3beta, alpha-synuclein, and type 3 diabetes bypotheses. Frontiers in Aging Neuroscience. 11: 184. DOI: https://doi.org/10.3389/fnagi.2019.00184

Okamura, T., Hashimoto, Y., Hamaguchi, M., Obora, A., Kojima, T., and Fukui, M. (2019). Ectopic fat obesity presents the greatest risk for incident type 2 diabetes: apopulationbased longitudinal study. International Journal of Obesity. 43(1): 139-148. DOI: https://doi.org/10.1038/s41366-018-0076-3

Ono, H. (2019). Molecular mechanisms of hypothalamic insulin resistance. International Journal of Molecular Sciences. 20(6): E1317. DOI: https://doi.org/10.3390/ijms20061317

Ozlu, E., Uzuncakmak, T. K., Takir, M., Akdeniz, N., and Karadag, A. S. (2018). Comparison of cutaneous manifestations in diabetic and nondiabetic obese patients: A prospective, controlled study. Northern Clinics of Istanbul. 5(2): 114-119. DOI: https://doi.org/10.14744/nci.2017.68553

Park, Y. W., Zhu, S., Palaniappan, L., Heshka, S., Carnethon, M. R., and Heymsfield, S. B. (2003). The metabolic syndrome: prevalence and associated risk factor findings in the US population from the Third National Health and Nutrition Examination Survey, 1988–1994. Archives International of Medicine. 163(2003): 427-436. DOI: https://doi.org/10.1001/archinte.163.4.427

Prakash, L., Bhosale, P., Cloyd, J., Kim, M., Parker, N., Yao, J., ..., and Katz, M. H. (2017). Role of fluorouracil, doxorubicin, and streptozocin therapy in the preoperative treatment of localized pancreatic neuroendocrine tumors. Journal of Gastrointestinal Surgery. 21(1): 155-163. DOI: https://doi.org/10.1007/s11605-016-3270-4

Radenković, M., Stojanović, M., and Prostran, M. (2016). Experimental diabetes induced by alloxan and streptozotocin: The current state of the art. Journal and Pharmacological and Toxicological Methods. 78: 13-31. DOI: https://doi.org/10.1016/j.vascn.2015.11.004

Rawshani, A., Sattar, N., Franzén, S., Rawshani, A., Hattersley, A. T., Svensson, A. M., ..., and Gudbjörnsdottir, S. (2018). Excess mortality and cardiovascular disease in Young adults with type 1 diabetes in relation to age at onset: a nationwide, register-based cohort study. Lancet. 392(10146): 477-486. DOI: https://doi.org/10.1016/S0140-6736(18)31506-X

Rerup, C. C (1970). Drugs producing diabetes through damage of the insulin secreting cells. Pharmacology Review. 22(4): 485-518.

Sah, S. P., Singh, B., Choudhary, S., and Kumar, A. (2016). Animal models of insulin resistance: A review. Pharmacological Reports: PR. 68(6): 1165-1177. DOI: https://doi.org/10.1016/j.pharep.2016.07.010

Saltiel, A. R. and Olefsky, J. M. (2017). Inflammatory mechanisms linking obesity and metabolic disease. Journal Clinical Investigation. 127(1): 1-4. DOI: https://doi.org/10.1172/JCI92035

Sankrityayan, H., Oza, M. J., Kulkarni, Y. A., Mulay, S. R., and Gaikwad, A. B. (2019). ER stress response mediates diabetic microvascular complications. Drug Discovery Today. 1359-6446(19): 30314-30319.

Sharma, G., Ashhar, M. U., Aeri, V., and Katare, D. P. (2019). Development and characterization of late-stage diabetes mellitus and associated vascular complications. Life Sciences. 216: 295-304. DOI: https://doi.org/10.1016/j.lfs.2018.11.005

Sharma, K., McCue, P., and Dunn, S. R. (2003). Diabetic kidney disease in the db/db mouse. American Journal of Physiology. Renal Physiology. 284(6): F1138-F1144. DOI: https://doi.org/10.1152/ajprenal.00315.2002

Shivaswamy, V., Boerner, B., and Larsen, J. (2016). Post-Transplant diabetes mellitus: causes, treatment, and impact on outcomes. Endocrinology Review. 37(1): 37-61. DOI: https://doi.org/10.1210/er.2015-1084

Soto, M., Cai, W., Konishi, M., and Kahn, C. R. (2019). Insulin signaling in the hippocampus and amygdala regulates metabolism and neurobehavior. Proceeding of the National Academy of Sciences of the United States America. 116(13): 6379-6384. DOI: https://doi.org/10.1073/pnas.1817391116

Spurr, S., Bally, J., Allan, D., Bullin, C., and McNair, E. (2019). Prediabetes: An emerging public health concern in adolescents. Endocrinology, Diabetes and Metabolism. 2(2): e00060. DOI: https://doi.org/10.1002/edm2.60

Srinivasan, K. and Ramarao, P. (2007). Animal models in type 2 diabetes research: an overview. The Indian of Journal of Medical Research. 125(3): 451-472.

Staats, J. (1975). Diabetes in the mouse due to two mutan genes - a bibliography. Diabetologia. 11(4): 325-327. DOI: https://doi.org/10.1007/BF00422399

Stein, A. D., Obrutu, O. E., Behere, R. V., and Yajnik, C. S. (2019). Developmental undernutrition, offspring obesity and type 2 diabetes. Diabetologia. 62(10): 1773-1778. DOI: https://doi.org/10.1007/s00125-019-4930-1

Szkudelski, T. (2001). The mechanism of alloxan and streptozotocin action in B cells of the rat pancreas. Physiological Research. 50(6): 537-546. DOI: https://doi.org/10.33549/physiolres.930111

Tamas, M. J., Khakharia, A., Rothenberg, R. B., and Phillips, L. S. (2018). Weight trends in veterans with and without diabetes, 2000 to 2014. Obesity. 26(12): 1949-1957. DOI: https://doi.org/10.1002/oby.22337

Tancredi, M., Rosengren, A., Svensson, A. M., Kosiborod, M., Pivodic, A., Gudbjörnsdottir, S., …, and Lind, M. (2015).

Excess mortality among persons with Type 2 diabetes. The New England Journal of Medical. 373(18): 1720-1732. DOI: https://doi.org/10.1056/NEJMoa1504347

Waernbaum, I., Dahlquist, G., and Lind, T. (2019). Perinatal risk factors for type 1 diabetes revisited: a populationbased register study. Diabetologia. 1-12. DOI: https://doi.org/10.1007/s00125-019-4874-5

Wells, J. C. K. (2019). The diabesity epidemic in the light of evolution: insights from the capacity-load model. Diabetologia. 62(10): 1740-1750. DOI: https://doi.org/10.1007/s00125-019-4944-8

Wilson, R. D. and Islam, M. S. (2012). Fructose-fed streptozotocin-injected rat: an alternative model for type 2 diabetes. Pharmacological Reports: PR. 64(1): 129-139. DOI: https://doi.org/10.1016/S1734-1140(12)70739-9

Winocur, G., Greenwood, C. E., Piroli, G. G., Grillo, C. A., Reznikov, L. R., Reagan, L. P., and McEwen, B. S. (2005). Memory impairment in obese Zucker rats: an investigation of cognitive function in an animal model of insulin resistance and obesity. Behavioral Neuroscience. 119(5): 1389-1395. DOI: https://doi.org/10.1037/0735-7044.119.5.1389

Wojciechowska, J., Krajewski, W., Bolanowski, M., Kręcicki, T., and Zatoński, T. (2016). Diabetes and Cancer: a review of current knowledge. Experimental Clinical Endocrinology Diabetes. 124(5): 263-275. DOI: https://doi.org/10.1055/s-0042-100910

Yu, Y. B., Bian, J. M., and Gu, D. H. (2015). Transplantation of insulin-producing cells to treat diabetic rats after 90 % pancreatectomy. World Journal of Gastroenterology. 21(21): 6582-6590. DOI: https://doi.org/10.3748/wjg.v21.i21.6582

Zhou, W., Wei, L., Xiao, T., Lai, C., Peng, M., Xu, L., …, and Zhang, F. (2017). Diabetogenic agent alloxan is a proteasome inhibitor. Biochemical and Biophysical Research Communications. 488(2): 400-406. DOI: https://doi.org/10.1016/j.bbrc.2017.05.065

Publicado

2020-01-31

Cómo citar

Moreno-Cortés, M. L., Gutiérrez-García, A. G., & Contreras, C. M. (2020). ¿Los protocolos experimentales son un símil real de la diabetes humana?. CienciaUAT, 14(2), 51–61. https://doi.org/10.29059/cienciauat.v14i2.1289

Número

Sección

Medicina y Ciencias de la Salud

Artículos similares

1 2 3 4 5 6 7 8 9 10 > >> 

También puede Iniciar una búsqueda de similitud avanzada para este artículo.