Microencapsulación de jugo de granada y extracto de jamaica: caracterización fisicoquímica, antioxidante y antimicrobiana
DOI:
https://doi.org/10.29059/cienciauat.v20i1.1989Palabras clave:
microencapsulación, jugo de granada, extracto de jamaica, capacidad antioxidante, actividad antimicrobianaResumen
La microencapsulación mejora la estabilidad y disponibilidad de compuestos bioactivos, como polifenoles de fuentes vegetales, para satisfacer la demanda de alimentos funcionales. Este estudio buscó obtener y caracterizar microencapsulados de jugo de granada y extracto de jamaica, evaluando sus propiedades fisicoquímicas, antioxidantes y antimicrobianas. Los microencapsulados se produjeron mediante secado por aspersión a 100 °C, con una velocidad de alimentación de 4 mL/min, en proporciones de jugo de granada y extracto de jamaica: 100:0 (C1), 70:30 (M1), 50:50 (M2), 30:70 (M3) y 0:100 (C2). Se analizaron humedad, actividad de agua, solubilidad, color, morfología, capacidad antioxidante y actividad antimicrobiana al inicio y tras 6 meses de almacenamiento. Los microencapsulados mostraron baja humedad (< 5 %, excepto C1) y actividad de agua (< 0.3), asegurando estabilidad fisicoquímica al limitar reacciones de degradación y crecimiento microbiano. La solubilidad superó el 93 % en todos los tratamientos. Las formulaciones con mayor contenido de extracto de jamaica (M3 y C2) presentaron mayor luminosidad y tonos rojizos. La microscopía electrónica de barrido reveló partículas esféricas con concavidades, sin grietas, típicas del secado por aspersión. Los tratamientos M3 y C2 también exhibieron la mayor capacidad antioxidante, destacando C2 con 4 717.10 mg de Trolox/100 g para ABTS y 4 729.43 mg de equivalente de ácido ascórbico/100 g para DPPH, con inhibiciones del radical del 95.68 % y 80.83 %, respectivamente. Además, M3 y C2, mostraron una inhibición significativa (P < 0.05), contra Escherichia coli. Tras 6 meses, las propiedades se preservaron parcialmente, especialmente en formulaciones ricas en extracto de jamaica. La microencapsulación de jugo de granada y extracto de jamaica demostró ser una estrategia efectiva para obtener productos con alta solubilidad, actividad antioxidante y antimicrobiana, ideales para aplicaciones en alimentos funcionales.
Citas
AACC, (2000). Approved Methods of the American Association of Cereal Chemists, (11 th Ed.), Vol II, American Association of Cereal Chemists,St. Paul. [En línea]. Disponible en: https://www.cerealsgrains.org/resources/Methods/Pages/default.aspx. Fecha de consulta: 6 de enero de 2025.
Álvarez-Cervantes, P., Cancino-Díaz, J. C., Fabela-Illescas, H. E., Cariño-Cortés, R., López-Villegas, E. O., Ariza‑Ortega, J. A., Belefant-Miller, H., & Betanzos-Cabrera, G. (2021). Spray-drying micro-encapsulation of pomegranate juice increases its antioxidant activity after in vitro digestion. International Journal of Food Science and Technology, 56(10), 5089-5096. https://doi.org/10.1111/ijfs.15093 DOI: https://doi.org/10.1111/ijfs.15093
Archaina, D., Vasile, F., Guzmán, J. J., Alamilla, L., & Carolina, B. (2019). Physical and functional properties of roselle (Hibiscus sabdariffa L.) extract spray dried with maltodextrin-gum arabic mixtures. May, 1-9. https://doi.org/10.1111/jfpp.14065 DOI: https://doi.org/10.1111/jfpp.14065
Betanzos-Cabrera, G., Montes-Rubio, P. Y., Fabela-Illescas, H. E., Belefant-Miller, H., Cancino-Diaz, J. C., Montes-Rubio, P. Y., & Fabela-Illescas, H. E. (2015). Antibacterial activity of fresh pomegranate juice against clinical strains of Staphylococcus epidermidis. Food & Nutrition Research, 59(1), 27620. https://doi.org/10.3402/fnr.v59.27620 DOI: https://doi.org/10.3402/fnr.v59.27620
Borrás-Linares, I., Fernández-Arroyo, S., Arráez-Roman, D., Palmeros-Suárez, P. A., Del-Val-Díaz, R., Andrade-Gonzáles, I., Fernández-Gutiérrez, A., Gómez-Leyva, J. F., & Segura-Carretero, A. (2015). Characterization of phenolic compounds, anthocyanidin, antioxidant and antimicrobial activity of 25 varieties of Mexican Roselle (Hibiscus sabdariffa). Industrial Crops and Products, 69, 385-394. https://doi.org/10.1016/j.indcrop.2015.02.053https://doi.org/10.32870/rmip.vi.552 DOI: https://doi.org/10.1016/j.indcrop.2015.02.053
Choudhury, N., Meghwal, M., & Das, K. (2021). Microencapsulation: An overview on concepts, me-thods, properties and applications in foods. Food Frontiers, 2(4), 426–442. https://doi.org/10.1002/fft2.94 DOI: https://doi.org/10.1002/fft2.94
Daza, L. D., Fujita, A., Fávaro-Trindade, C. S., Rodrigues-Ract, J. N., Granato, D., & Genovese, M. I. (2016). Effect of spray drying conditions on the physical properties of Cagaita (Eugenia dysenterica DC.) fruit extracts. Food and Bioproducts Processing, 97, 20-29. https://doi.org/10.1016/j.fbp.2015.10.001 DOI: https://doi.org/10.1016/j.fbp.2015.10.001
Dhakal, S. P. & He, J. (2020). Microencapsulation of vitamins in food applications to prevent losses in processing and storage: A review. Food Research International, 137, 109326. https://doi.org/10.1016/j.foodres.2020.109326 DOI: https://doi.org/10.1016/j.foodres.2020.109326
Díaz-López, A. C., Villa-Cruz, V. y Vela-Gutiérrez, G. (2023). Viabilidad de bacterias ácido lácticas microencapsuladas mediante secado por aspersión con almidón de malanga en dos suplementos alimenticios. CienciaUAT, 18(2), 145-154. https://doi.org/10.29059/cienciauat.v18i2.1804 DOI: https://doi.org/10.29059/cienciauat.v18i2.1804
Haidari, M., Ali, M., Ward Casscells, S., & Madjid, M. (2009). Pomegranate (Punica granatum) purified polyphenol extract inhibits influenza virus and has a synergistic effect with oseltamivir. Phytomedicine, 16(12), 1127–1136. https://doi.org/10.1016/j.phymed.2009.06.002 DOI: https://doi.org/10.1016/j.phymed.2009.06.002
Hernández-López, Z., Rangel-Vargas, E., Castro-Rosas, J., Gómez-Aldapa, C. A., Cadena-Ramírez, A., Acevedo-Sandoval, O. A., Gordillo-Martínez, A. J., & Falfán-Cortés, R. N. (2018). Optimization of a spray-drying process for the production of maximally viable microencapsulated Lactobacillus pentosus using a mixture of starch-pulque as wall material. Lwt, 95, 216–222. https://doi.org/10.1016/j.lwt.2018.04.075 DOI: https://doi.org/10.1016/j.lwt.2018.04.075
Izquierdo-Vega, J. A., Arteaga-Badillo, D. A., Sánchez-Gutiérrez, M., Morales-González, J. A., Vargas-Mendoza, N., Gómez-Aldapa, C. A., Castro-Rosas, J., Delgado-Olivares, L., Madrigal-Bujaidar, E., & Madrigal-Santillán, E. (2020). Organic acids from Roselle (Hibiscus sabdariffa L.)-A brief review of its pharmacological effects. Biomedicines, 8(5), 1-16. https://doi.org/10.3390/BIOMEDICINES8050100 DOI: https://doi.org/10.3390/biomedicines8050100
Jafari, S. M., Ghalegi-Ghalenoei, M., & Dehnad, D. (2017). Influence of spray drying on water solubility index, apparent density, and anthocyanin content of pomegranate juice powder. Powder Technology, 311, 59-65. https://doi.org/10.1016/j.powtec.2017.01.070 DOI: https://doi.org/10.1016/j.powtec.2017.01.070
Jiménez-González, O. & Guerrero-Beltrán, J. Á. (2021). Extraction, microencapsulation, color properties, and experimental design of natural pigments obtained by spray drying. In Food Engineering Reviews,13(4), 769-811. https://doi.org/10.1007/s12393-021-09288-7 DOI: https://doi.org/10.1007/s12393-021-09288-7
Khajebishak, Y., Payahoo, L., Alivand, M., Hamishehkar, H., Mobasseri, M., Ebrahimzadeh, V., Alipour, M., & Alipour, B. (2019). Effect of pomegranate seed oil supplementation on the GLUT-4 gene expression and glycemic control in obese people with type 2 diabetes: A randomized controlled clinical trial. Journal of Cellular Physiology, 234(11), 19621–19628. https://doi.org/10.1002/jcp.28561 DOI: https://doi.org/10.1002/jcp.28561
Maciel, L. G., do-Carmo, M. A. V., Azevedo, L., Daguer, H., Molognoni, L., de-Almeida, M. M., Granato, D., & Rosso, N. D. (2018). Hibiscus sabdariffa anthocyanins-rich extract: Chemical stability, in vitro antioxidant and antiproliferative activities. Food and Chemical Toxicology, 113, 187-197. https://doi.org/10.1016/j.fct.2018.01.053 DOI: https://doi.org/10.1016/j.fct.2018.01.053
Marques, L. G., Ferreira, M. C., & Freire, J. T. (2007). Freeze-drying of acerola (Malpighia glabra L.). Chemical Engineering and Processing: Process Intensification, 46(5), 451–457. https://doi.org/10.1016/j.cep.2006.04.011 DOI: https://doi.org/10.1016/j.cep.2006.04.011
Martinez-Ramirez, E. Z., Gonzalez-Cruz, L., Bernardino-Nicanor, A., Silva-Martínez, G. A., Falfan-Cortes, R. N., Gonzalez-Montiel, S., & Gomez-Aldapa, C. A. (2024). Hibiscus Acid Inhibitory Capacity of Angiotensin Converting Enzyme: an In Vitro and In Silico Study. Plant Foods for Human Nutrition, 79(1), 234-241. https://doi.org/10.1007/s11130-024-01142-5 DOI: https://doi.org/10.1007/s11130-024-01142-5
Meneses-Marentes, N. A., Herrera-Ramírez, E. J., & Tarazona-Díaz, M. P. (2019). Characterization and stability of an extract rich in anthocyanins from passion purple fruit peel. Revista Colombiana de Quimica, 48(2), 27–32. https://doi.org/10.15446/rev.colomb.quim.v48n2.76682 DOI: https://doi.org/10.15446/rev.colomb.quim.v48n2.76682
Mortada, W. I., Awadalla, A., Khater, S. M., Barakat, N. M., Husseiny, S. M., & Shokeir, A. A. (2020). Preventive effect of pomegranate juice against chemically induced bladder cancer: An experimental study. Heliyon, 6(10), e05192. https://doi.org/10.1016/j.heliyon.2020.e05192 DOI: https://doi.org/10.1016/j.heliyon.2020.e05192
Nguyen, Q. D., Dang, T. T., Nguyen, T. V. L., Ngu-yen, T. T. D., & Nguyen, N. N. (2022). Microencapsulation of roselle (Hibiscus sabdariffa L.) anthocyanins: Effects of different carriers on selected physicochemical properties and antioxidant activities of spray-dried and freeze-dried powder. International Journal of Food Properties, 25(1), 359-374. https://doi.org/10.1080/10942912.2022.2044846 DOI: https://doi.org/10.1080/10942912.2022.2044846
Ochoa-Reyes, E., Guevara-Aguilar, A. y Tirado-Gallegos, J. M. (2022). Adición de extracto de cáscara de granada en un alimento tradicional mexicano y evaluación de la estabilidad al procesado. Universitas Agri, 1 (1): 18 DOI: https://doi.org/10.59741/agri.v1i1.3
Ozkan, G., Franco, P., De-Marco, I., Xiao, J., & Capanoglu, E. (2019). A review of microencapsulation methods for food antioxidants: Principles, advantages, drawbacks and applications. Food Chemistry, 272: 494–506. https://doi.org/10.1016/j.foodchem.2018.07.205 DOI: https://doi.org/10.1016/j.foodchem.2018.07.205
Portillo-Torres, L. A., Bernardino-Nicanor, A., Gómez-Aldapa, C. A., González-Montiel, S., Rangel-Vargas, E., Villagómez-Ibarra, J. R., González-Cruz, L., Cortés-López, H., & Castro-Rosas, J. (2019). Hibiscus acid and chromatographic fractions from Hibiscus sabdariffa calyces: Antimicrobial activity against multidrug-resistant pathogenic bacteria. Antibiotics, 8(4), 1-18. https://doi.org/10.3390/antibiotics8040218 DOI: https://doi.org/10.3390/antibiotics8040218
Rangel-Vargas, E., Gómez-Aldapa, C. A., Falfan-Cortes, R. N., Rodŕiguez-Maŕin, M. L., Godinez-Oviedo, A., Acevedo-Sandoval, O. A., & Castro-Rosas, J. (2017). Attachment of 13 types of foodborne bacteria to Jalapeño and Serrano peppers and antibacterial effect of roselle calyx extracts, sodium hypochlorite, colloidal silver, and acetic acid against these foodborne bacteria on peppers. Journal of Food Protection, 80(3), 406-413. https://doi.org/10.4315/0362-028X.JFP-16-269 DOI: https://doi.org/10.4315/0362-028X.JFP-16-269
Reyes, V., Chotiko, A., Chouljenko, A., & Sathivel, S. (2018). Viability of Lactobacillus acidophilus NRRL B-4495 encapsulated with high maize starch, maltodextrin, and gum arabic. Lwt, 96, 642-647. https://doi.org/10.1016/j.lwt.2018.06.017 DOI: https://doi.org/10.1016/j.lwt.2018.06.017
Rezende, Y. R. R. S., Nogueira, J. P., & Narain, N. (2018). Microencapsulation of extracts of bioactive compounds obtained from acerola (Mal-pighia emarginata DC) pulp and residue by spray and freeze drying: Chemical, morphological and chemometric characterization. Food Chemistry, 254, 281-291. https://doi.org/10.1016/j.foodchem.2018.02.026 DOI: https://doi.org/10.1016/j.foodchem.2018.02.026
Ribeiro, A. M., Shahgol, M., Estevinho, B. N., & Rocha, F. (2020). Microencapsulation of Vitamin A by spray-drying, using binary and ternary blends of gum arabic, starch and maltodextrin. Food Hydrocolloids, 108, 106029. https://doi.org/10.1016/j.foodhyd.2020.106029 DOI: https://doi.org/10.1016/j.foodhyd.2020.106029
Rodríguez, O., Cardoso, F., González, J., Íñiguez, C. y Núñez, M. (2017). Temperaturas de secado para la microencapsulación de saborizantes frutales mediante secado por aspersión. Ciencia y Tecnología de Alimentos, 27(3), 1-6.
Tatasciore, S., Santarelli, V., Neri, L., Di-Mattia, C. D., Di-Michele, A., Mastrocola, D., & Pittia, P. (2024). Microencapsulation of hop bioactive compounds by spray drying: Role of inlet temperature and wall material. Current Research in Food Science, 8. 100769 https://doi.org/10.1016/j.crfs.2024.100769 DOI: https://doi.org/10.1016/j.crfs.2024.100769
Tonon, R. V., Brabet, C., & Hubinger, M. D. (2008). Influence of process conditions on the physico-chemical properties of açai (Euterpe oleraceae Mart.) powder produced by spray drying. Journal of Food Engineering, 88(3), 411–418. https://doi.org/10.1016/j.jfoodeng.2008.02.029 DOI: https://doi.org/10.1016/j.jfoodeng.2008.02.029
Tonon, R. V, Brabet, C., & Hubinger, M. D. (2010). Anthocyanin stability and antioxidant activity of spray-dried açai (Euterpe oleracea Mart.) juice produced with different carrier agents. Food Research International, 43(3), 907–914. https://doi.org/10.1016/j.foodres.2009.12.013 DOI: https://doi.org/10.1016/j.foodres.2009.12.013
Türkyılmaz, M., Hamzaoğlu, F., Çiftci, R. B. A., & Özkan, M. (2023). Increase in colour stability of pomegranate juice against 5-hydroxymethylfurfural (HMF) through copigmentation with phenolic acids. Journal of the Science of Food and Agriculture, 103(15), 7836–7848. https://doi.org/10.1002/jsfa.12866 DOI: https://doi.org/10.1002/jsfa.12866
Vargas-León, E. A., Díaz-Batalla, L., González-Cruz, L., Bernardino-Nicanor, A., Castro-Rosas, J., Reynoso-Camacho, R., & Gómez-Aldapa, C. A. (2018). Effects of acid hydrolysis on the free radical scavenging capacity and inhibitory activity of the angiotensin converting enzyme of phenolic compounds of two varieties of Jamaica (Hibiscus sabdariffa). Industrial Crops and Products, 116, 201-208. https://doi.org/10.1016/j.indcrop.2018.02.044 DOI: https://doi.org/10.1016/j.indcrop.2018.02.044
Ye, Q., Georges, N., & Selomulya, C. (2018). Microencapsulation of active ingredients in functional foods: From research stage to commercial food products. Trends in Food Science and Technology, 78, 167-179. https://doi.org/10.1016/j.tifs.2018.05.025 DOI: https://doi.org/10.1016/j.tifs.2018.05.025
Publicado
Cómo citar
Número
Sección
Categorías
Licencia
Derechos de autor 2025 Universidad Autónoma de Tamaulipas

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.
Aceptado 2025-05-08
Publicado 2025-05-30