Importancia de la interacción genotipo x ambiente en rasgos de producción en ganado lechero

Autores/as

  • Juan Carlos Martínez-González Universidad Autónoma de Tamaulipas. Facultad de Ingeniería y Ciencias, Centro Universitario “Lic. Adolfo López Mateos”, Ciudad Victoria, Tamaulipas, México, C.P. 87149.
  • Nicacia Hernández-Hernández Universidad Autónoma de Tamaulipas. Facultad de Ingeniería y Ciencias, Centro Universitario “Lic. Adolfo López Mateos”, Ciudad Victoria, Tamaulipas, México, C.P. 87149.
  • Gaspar Manuel Parra-Bracamonte Instituto Politécnico Nacional.Centro de Biotecnología Genómica, Laboratorio de Biotecnología Animal, boulevard del Maestro s/n, Esq. Elías Piña, col. Narciso Mendoza, Reynosa, Tamaulipas, México, C.P. 88710.
  • Eugenia Guadalupe Cienfuegos-Rivas Universidad Autónoma de Tamaulipas. Facultad de Ingeniería y Ciencias, Centro Universitario “Lic. Adolfo López Mateos”, Ciudad Victoria, Tamaulipas, México, C.P. 87149.

DOI:

https://doi.org/10.29059/cienciauat.v10i2.755

Palabras clave:

correlación genética, ganado lechero, interacción genotipo x ambiente, mejoramiento genético.

Resumen

El ganado bovino lechero expresa con diferente nivel de eficiencia su potencial genético dependiendo de la región en que se desarrolla; a este efecto se le denomina interacción genotipo x ambiente (IGA), y puede afectar la eficiencia de los programas de mejoramiento genético. Este fenómeno debe ser considerado al importar recursos genéticos de otros países e incluso de otras regiones dentro de un mismo país. El objetivo de este trabajo fue analizar los principales aspectos de la IGA en el mejoramiento genético de ganado bovino lechero. Los programas de mejoramiento genético deben estar basados en el registro de las operaciones que se realizan en cada una de las unidades de operación, lo que permitirá establecer cuales fueron los principales factores que influyeron en la expresión del potencial genético y su reflejo en la producción alcanzada. Se concluye que la selección de los sementales de la próxima generación deberá realizarse en las mismas condiciones donde se usarán sus progenies, buscando minimizar la IGA.

 

Archivo XML (SciELO)

Biografía del autor/a

Juan Carlos Martínez-González, Universidad Autónoma de Tamaulipas. Facultad de Ingeniería y Ciencias, Centro Universitario “Lic. Adolfo López Mateos”, Ciudad Victoria, Tamaulipas, México, C.P. 87149.

Facultad de Ingeniería y Ciencias

Citas

Alencar, M. M., Mascioli, A. S., and Freitas, A. R. (2005). Evidências de interação genótipo x ambiente sobre características de crescimento em bovinos de corte. Revista Brasileña de Zootecnia. 34(2): 489-495.

Arango, J. y Echeverri, J. J. (2014). Asociación del valor genético del toro con caracteres productivos en vacas lecheras en Colombia. Archivos de zootecnia. 63(242): 227-237.

Arias, R. A., Mader, T. L. y Escobar, P. C. (2008). Factores climáticos que afectan el desempeño productivo del ganado bovino de carne y leche. Archivos de Medicina Veterinaria. 40(1): 7-22.

Baye, T. M., Abebe, T., and Wilke, R. A. (2011). Genotype–environment interactions and their translational implications. Personalized Medicine. 8(1): 59-70.

Buckley, F., Dillon, P., Crosse, S., Flynn, F., and Rath, M. (2000). The performance of Holstein Friesian dairy cows of high and medium genetic merit for milk production on grass-based feeding systems. Livestock Production Science. 64(2): 107-119.

Cerón-Muñoz, M. F., Tonhati, H., Costa, C. y Benavides, F. (2001). Interacción genotipo-ambiente en ganado Holstein colombiano. Archivos Latinoamericanos de Producción Animal. 9(2): 74-78.

Cienfuegos-Rivas, E. G., Oltenacu, P. A., Blake, R. W., Schwager, S. J., Castillo-Juarez, H., and Ruíz, F. J. (1999). Interaction between milk yield of Holstein cows in México and the United States. Journal of Dairy Science. 82(10): 2218-2223.

Cruz, C. D. and Regazzi, A. J. (1994). Modelos biométricos aplicados ao melhoramento genético. Viçosa: Universidade Federal de Viçosa. 390 Pp.

Diaz, I. D. P. S., Oliveira, H. N. D., Bezerra, L. A. F., and Lôbo, R. B. (2011). Genotype by environment interaction in Nelore cattle from five Brazilian states. Genetics and molecular biology. 34(3): 435-442.

Echeverri, J., Rincón, J. C., and López-Herrera, A. (2014). Estimation of genotype-by-environment interaction for milk traits based on foreign sires used in Colombia. Revista Colombiana de Ciencias Pecuarias. 27(4): 245-252.

Gebreyohannes, G., Koonawootrittriron, S., Elso, M. A., and Suwanasopee, T. (2014). Genotype by environment interaction effect on lactation pattern and milk production traits in an ethiopian dairy cattle population. Natural Science. 48(1): 38-51.

Hahn, G. L., Mader, T. L., and Eigenberg, R. A. (2003). Perspective on development of thermal indices for animal studies and management. In N. Lacetera, U. Bernabucci, H. H. Khalifa, B. Ronchi, and A. Nardone (Eds.). Interactions between climate and animal production (pp. 31-44). Italia: EAAP Technical series.

Hamrouni, A., Djemali, M., and Bedhiaf, S. (2014). Interaction between genotype and geographic region for milk production traits in Tunisian Holstein cattle. International Journal of Farming and Allied Sciences. 3(6): 623-628.

Hayes, B. J., Lewin, H. A., and Goddard, M. E. (2013). The future of livestock breeding: genomic selection for efficiency, reduced emissions intensity, and adaptation. Trends in Genetic. 29(4): 206-214.

Huquet, B., Leclerc, H., and Ducrocq, V. (2012). Modelling and estimation of genotype by environment interactions for production traits in French dairy cattle. Genetics Selection Evolution. 44(35): 1-14.

Kemper, K. E. and Goddard, M. E. (2012). Understanding and predicting complex traits: knowledge from cattle. Human Molecular Genetics. 21(1): 45-51.

Larios-Sarabia, N., Ramírez-Valverde, R., Núñez-Domínguez, R., García-Muñiz, J. G. y Ruíz-Flores, A. (2011). Caracterización técnica, social y económica de las empresas del hato bovino Jersey de registro en México. Agricultura, sociedad y desarrollo. 8(2): 229-247.

Lin, C. Y. and Togashi, K. (2002). Genetic improvement in the presence of genotype by environment interaction. Animal Science Journal. 73(1): 3–11.

López-Zavala, R. (2010). Marcadores Genéticos, su detección y utilización como herramienta de selección en el ganado bovino ¿Qué es lo que se está haciendo en Tamaulipas?. CienciaUAT. 4(4): 44-49.

Lozano-Domínguez, R. R., Asprón-Pelayo, M. A., Vásquez-Peláez, C. G., González-Padilla, E. y Aréchiga-Flores, C. F. (2010). Efecto del estrés calórico sobre la producción embrionaria en vacas superovuladas y la tasa de gestación en receptoras.Revista Mexicana de Ciencias Pecuarias. 1(3): 189-203.

Lynch, M. and Walsh, B. (1998). Genetics and Analysis of Quantitative Traits. USA: Sinauer Associates Inc., USA. 980 Pp.

Montaldo, H. H., Núñez-Soto, S. G., Ruiz-López, F. J.,

and Castillo-Juárez, H. (2010). Selection response for milk production in conventional production systems in Mexico, using genetic evaluations of Holstein sires from Canada and the United States. Journal of Dairy Science. 92(10): 5270-5275.

Neser, F. W. C., Van Wyk, J. B., and Ducrocq, V. (2014). A preliminary investigation into genotype x environment interaction in South African Holstein cattle for reproduction and production traits. South African Journal of Animal Science. 44(5): 75-79.

Ochoa, G. P. (1991). Mejoramiento genético del ganado bovino productor de leche. Ciencia Veterinaria. 5(4): 67-88.

Ramírez-Carballo, H., López-Villalobos, N. y Hernández-Salgado, J. R. (2007). Interacción genotipo-ambiente en la evaluación genética de sementales Holstein-Friesan en la Comarca Lagunera, México. Revista Chapingo Series Zonas Áridas. 6(1): 147-154.

Rodríguez, Y. y Guerra, D. (2013). Evidencia de interacción genotipo-ambiente para peso final en prueba de comportamiento en el Cebú Cubano. Revista Cubana de Ciencia Agrícola. 47(1): 13-17.

Strandberg, E., Brotherstone, S., Wall, E., and Coffey, M. P. (2009). Genotype by environment interaction for first-lactation female fertility traits in UK dairy cattle. Journal of dairy science. 92(7): 3437-3446.

Streit, M., Wellmann, R., Reinhardt, F., Thaller, G., Piepho, H. P., and Bennewitz, J. (2013). Using Genome-Wide Association Analysis to Characterize Environmental Sensitivity of Milk Traits in Dairy Cattle. G3 (Bethesda, Md). 3(7): 1085-1093.

Togashi, K., Lin, C. Y., Yoshizawa, T., Okamura, Y., Moribe, K., Nishiura, A., and Yakamoto, N. (2002). Partition of sire effects for international sire evaluation in the presence of genotype x environment interaction. Livestock Production Science. 73(2): 225-235.

Tumwasorn, S. (2012). The optimization of environment and genotype to maximize farm income in the tropics. Khon Kaen Agriculture Journal. 40(2): 100–103.

Valencia, M., Montaldo, H. H., and Ruíz, F. (2008). Interaction between genotype and geographic region for milk production in Mexican Holstein cattle. Archivos de Zootecnia. 57(220): 457-463.

Valencia, P. M., Ruiz, L. F. J., and Montaldo, H. H. (2004). Genetic and environmental variance components for milk yield across regions, time periods and herd levels for Holstein cattle in Mexico. Revista Científica (Maracaibo). XIV(5): 404-411.

Vargas, L. B. y Gamboa, Z. G. (2008). Estimación de tendencias genéticas e interacción genotipo x ambiente en ganado lechero de Costa Rica. Revista Mexicana de Ciencias Pecuarias. 46(4): 371-386.

Verde, O. (2010). Interacción genotipo x ambiente para peso a 548 días en bovinos de carne. Zootecnia Tropical. 28(4): 507-512.

Publicado

2016-02-29

Cómo citar

Martínez-González, J. C., Hernández-Hernández, N., Parra-Bracamonte, G. M., & Cienfuegos-Rivas, E. G. (2016). Importancia de la interacción genotipo x ambiente en rasgos de producción en ganado lechero. CienciaUAT, 10(2), 72-78. https://doi.org/10.29059/cienciauat.v10i2.755

Número

Sección

Biotecnología y Ciencias Agropecuarias

Artículos similares

También puede {advancedSearchLink} para este artículo.