Optimización del proceso de hidrólisis del colágeno bovino y evaluación de sus propiedades tecnofuncionales y antioxidantes
DOI:
https://doi.org/10.29059/cienciauat.v20i1.2007Palabras clave:
colágeno hidrolizado, grado de hidrólisis, propiedades tecnofuncionales, optimización, actividad antioxidanteResumen
El colágeno es una proteína abundante en los organismos vertebrados. Forma parte de tejidos conectivos como la piel, las articulaciones, los ligamentos y los huesos. Se puede hidrolizar enzimáticamente con la finalidad de mejorar sus propiedades tecnofuncionales (solubilidad, emulsificación, espumantes, entre otras). Durante la generación de colágeno hidrolizado se exponen secuencias peptídicas que presenten propiedades bioactivas, como antioxidantes, antihipertensivas y antidiabéticas. El objetivo de este trabajo fue optimizar el grado de hidrólisis del colágeno bovino mediante proteasas comerciales y la evaluación de las propiedades tecnofuncionales y antioxidantes, de los productos resultantes. La optimización del grado de hidrólisis se realizó usando la metodología de superficie de respuesta, mediante un diseño central compuesto. El análisis proximal de la materia prima mostró un alto contenido de proteína (88 %). El proceso de optimización indicó un grado de hidrólisis extensivo (76.38 %, P ≤0.05) para la enzima PAL®, con una relación E/S de 1.43 UN/g en un tiempo de 23.75 h. Las propiedades tecnofuncionales se asociaron de manera positiva (P ≤ 0.05) con el grado de hidrólisis: 95.02 % con la solubilidad (pH 9), 48 % y 34 % con la capacidad y la estabilidad de emulsificación, respectivamente. El espumado disminuyó en función del incremento del grado de hidrólisis con la enzima HT proteolitic®, alcanzando una reducción del 47 % de la estabilidad y 26 % en la capacidad. La capacidad antioxidante del colágeno hidrolizado (24 h) incrementó de manera significativa (P ≤ 0.05), mostrando un valor de 62.38 % (DPPH) y 0.39 UA700 nm (poder reductor) con la enzima PAL® y de 80.55 % (ABTS) para la enzima HT proteolitic®. La optimización de la hidrólisis enzimática del colágeno mejoró sus propiedades tecnofuncionales (solubilidad y emulsificación) y antioxidantes.
Citas
Adler-Nissen, J. (1979). Determination of the degree of hydrolysis of food protein hydrolysates by trinitrobenzenesulfonic acid. Journal of Agricultural and Food Chemistry, 27(6), 1256-1262. https://doi.org/10.1021/jf60226a042 DOI: https://doi.org/10.1021/jf60226a042
Aguirre-Cruz, G., León-López, A., Cruz-Gómez, V., Jiménez-Alvarado, R., & Aguirre-Álvarez, G. (2020). Collagen Hydrolysates for Skin Protection: Oral Administration and Topical Formulation. Antioxidants, 9(2), 181. https://doi.org/10.3390/antiox9020181 DOI: https://doi.org/10.3390/antiox9020181
Ahmad, M. I., Li, Y., Pan, J., Liu, F., Dai, H., Fu, Y., Huang, T., Farooq, S., & Zhang, H. (2024). Collagen and gelatin: Structure, properties, and applications in food industry. International Journal of Biological Macromolecules, 254, 128037. https://doi.org/10.1016/j.ijbiomac.2023.128037 DOI: https://doi.org/10.1016/j.ijbiomac.2023.128037
Anzani, C., Álvarez, C., & Mullen, A. M. (2020). Assessing the effect of Maillard reaction with dextran on the techno-functional properties of collagen-based peptides obtained from bovine hides. LWT, 118, 108800. https://doi.org/10.1016/j.lwt.2019.108800 DOI: https://doi.org/10.1016/j.lwt.2019.108800
AOAC, Association of Official Analytical Chemists (2000). Official Methods of Analysis (Seventeenth edition). AOAC International.
Barzideh, Z., Abd-Latif, A., Gan, C. Y., Abedin, Md. Z., & Alias, A. K. (2014). ACE Inhibitory and Antioxidant Activities of Collagen Hydrolysates from the Ribbon Jellyfish (Chrysaora sp.). Food Technology and Biotechnology, 52(4), 495-504. https://doi.org/10.17113/ftb.52.04.14.3641 DOI: https://doi.org/10.17113/ftb.52.04.14.3641
Bhuimbar, M. V., Jalkute, C. B., Bhagwat, P. K., & Dandge, P. B. (2024). Purification, characterization and application of collagenolytic protease from Bacillus subtilis strain MPK. Journal of Bioscience and Bioengineering, 138(1), 21-28. https://doi.org/10.1016/j.jbiosc.2024.03.003 DOI: https://doi.org/10.1016/j.jbiosc.2024.03.003
Blanco, M., Vázquez, J. A., Pérez-Martín, R. I., & G. Sotelo, C. (2019). Collagen Extraction Optimization from the Skin of the Small-Spotted Catshark (S. canicula) by Response Surface Methodology. Marine Drugs, 17(1), 40. https://doi.org/10.3390/md17010040 DOI: https://doi.org/10.3390/md17010040
Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72(1-2), 248-254. https://doi.org/10.1016/0003-2697(76)90527-3 DOI: https://doi.org/10.1006/abio.1976.9999
Chi, C., Hu, F., Li, Z., Wang, B., & Luo, H. (2016). Influence of Different Hydrolysis Processes by Trypsin on the Physicochemical, Antioxidant, and Functional Properties of Collagen Hydrolysates from Sphyrna lewini, Dasyatis akjei, and Raja porosa. Journal of Aquatic Food Product Technology, 25(5), 616-632. https://doi.org/10.1080/10498850.2014.898004 DOI: https://doi.org/10.1080/10498850.2014.898004
Chi, C. F., Cao, Z. H., Wang, B., Hu, F. Y., Li, Z. R., & Zhang, B. (2014). Antioxidant and Functional Properties of Collagen Hydrolysates from Spanish Mackerel Skin as Influenced by Average Molecular Weight. Molecules, 19(8), 11211–11230. https://doi.org/10.3390/molecules190811211 DOI: https://doi.org/10.3390/molecules190811211
Deng, G., Huang, K., Jiang, X., Wang, K., Song, Z., Su, Y., Li, C., Zhang, S., Wang, S., & Huang, Y. (2023). Developments for collagen hydrolysates as a multifunctional anti-oxidant in biomedical domains. Collagen and Leather, 5(1), 26. https://doi.org/10.1186/s42825-023-00131-9 DOI: https://doi.org/10.1186/s42825-023-00131-9
González-Serrano, D. J., Hadidi, M., Varcheh, M., Jelyani, A. Z., Moreno, A., & Lorenzo, J. M. (2022). Bioactive Peptide Fractions from Collagen Hydrolysate of Common Carp Fish Byproduct: Antioxidant and Functional Properties. Antioxidants, 11(3), 509. https://doi.org/10.3390/antiox11030509 DOI: https://doi.org/10.3390/antiox11030509
Hema, G. S., Joshy, C. G., Shyni, K., Chatterjee, N. S., Ninan, G., & Mathew, S. (2017). Optimization of process parameters for the production of collagen peptides from fish skin (Epinephelus malabaricus) using response surface methodology and its characterization. Journal of Food Science and Technology, 54(2), 488-496. https://doi.org/10.1007/s13197-0172490-2 DOI: https://doi.org/10.1007/s13197-017-2490-2
Hong, G. P., Min, S. G., & Jo, Y. J. (2019). Anti-Oxidative and Anti-Aging Activities of Porcine By-Product Collagen Hydrolysates Produced by Commercial Proteases: Effect of Hydrolysis and Ultrafiltration. Molecules, 24(6), 1104. https://doi.org/10.3390/molecules24061104 DOI: https://doi.org/10.3390/molecules24061104
Hu, G., Li, X., Su, R., Corazzin, M., Liu, X., Dou, L., Sun, L., Zhao, L., Su, L., Tian, J., & Jin, Y. (2023). Effects of ultrasound on the structural and functional properties of sheep bone collagen. Ultrasonics Sonochemistry, 95, 106366. https://doi.org/10.1016/j.ultsonch.2023.106366 DOI: https://doi.org/10.1016/j.ultsonch.2023.106366
Lambré, C., Barat-Baviera, J. M., Bolognesi, C., Cocconcelli, P. S., Crebelli, R., Gott, D. M., Grob, K., Lampi, E., Mengelers, M., Mortensen, A., Rivière, G., Steffensen, I., Tlustos, C., Van Loveren, H., Vernis, L., Zorn, H., Herman, L., Aguilera, J., Andryszkiewicz, M., Fernandez-Fraguas, C., Liu, Y., & Chesson, A. (2023). Safety evaluation of the food enzyme bacillolysin from the non-genetically modified Bacillus amyloliquefaciens strain HPN 131. EFSA Journal, 21(11), 1-12. https://doi.org/10.2903/j.efsa.2023.8390 DOI: https://doi.org/10.2903/j.efsa.2023.8390
León-López, A., Fuentes-Jiménez, L., Hernández-Fuentes, A. D., Campos-Montiel, R. G., & Aguirre-Álvarez, G. (2019). Hydrolysed Collagen from Sheep-skins as a Source of Functional Peptides with Antioxidant Activity. International Journal of Molecular Sciences, 20(16), 3931. https://doi.org/10.3390/ijms20163931 DOI: https://doi.org/10.3390/ijms20163931
Liang, Q., Wang, L., He, Y., Wang, Z., Xu, J., & Ma, H. (2014). Hydrolysis kinetics and antioxidant activity of collagen under simulated gastrointestinal digestion. Journal of Functional Foods, 11, 493-499. https://doi.org/10.1016/j.jff.2014.08.004 DOI: https://doi.org/10.1016/j.jff.2014.08.004
Montgomery, D. C. (2020). Design and Analysis of Experiments (10th edition). Wiley.
Munteanu, I. G. & Apetrei, C. (2021). Analytical Methods Used in Determining Antioxidant Activity: A Review. International Journal of Molecular Sciences, 22(7), 3380. https://doi.org/10.3390/ijms22073380 DOI: https://doi.org/10.3390/ijms22073380
Myers, R. H., Montgomery, D. C., & Anderson-Cook, C. M. (2016). Response Surface Methodology: Process and Product Optimization Using Designed Experiments (Fourth edition). Wiley series in probability and statistics.
Nguyen, B. C., Kha, T. C., Nguyen, K. H. N., & Nguyen, H. M. X. (2021). Optimization of enzymatic hydrolysis of collagen from yellowfin tuna skin (Thunnus albacares) by response surface methodology and properties of hydrolyzed collagen. Journal of Food Processing and Preservation, 45(4). https://doi.org/10.1111/jfpp.15319 DOI: https://doi.org/10.1111/jfpp.15319
Nuñez, S. M., Cárdenas, C., Pinto, M., Valencia, P., Cataldo, P., Guzmán, F., & Almonacid, S. (2020). Bovine skin gelatin hydrolysates as potential substitutes for polyphosphates: The role of degree of hydrolysis and pH on water-holding capacity. Journal of Food Science, 85(7), 1988-1996. https://doi.org/10.1111/1750-3841.15299 DOI: https://doi.org/10.1111/1750-3841.15299
Philipps-Wiemann, P. (2018). Proteases—general aspects. In Nunes, C.S. and Kumar, V. (Ed.), Enzymes in Human and Animal Nutrition (pp. 257-266). Elsevier. https://doi.org/10.1016/B978-0-12-8054192.00012-5 DOI: https://doi.org/10.1016/B978-0-12-805419-2.00012-5
Qi, L., Zhang, H., Guo, Y., Liu, H., & Zhang, C. (2024). Preparation, characterization and antioxidant activity analysis of three Maillard glycosylated bonecollagen hydrolysates from chicken, porcine and bovine. Food Science and Human Wellness, 13(4), 2002–2013. https://doi.org/10.26599/FSHW.2022.9250166 DOI: https://doi.org/10.26599/FSHW.2022.9250166
Schmidt, M. M., Fontoura, A. M. da, Vidal, A. R., Dornelles, R. C. P., Kubota, E. H., Mello, R. de O., Cansian, R. L., Demiate, I. M., & Oliveira, C. S. (2020). Characterization of hydrolysates of collagen from mechanically separated chicken meat residue. Food Science and Technology, 40(suppl 1), 355-362. https://doi.org/10.1590/fst.14819 DOI: https://doi.org/10.1590/fst.14819
Silvipriya, K., Kumar, K., Bhat, A., Kumar, B., John, A., & Lakshmanan, P. (2015). Collagen: Animal Sources and Biomedical Application. Journal of Applied Pharmaceutical Science, 123-127. https://doi.org/10.7324/JAPS.2015.50322 DOI: https://doi.org/10.7324/JAPS.2015.50322
Song, Y., Fu, Y., Huang, S., Liao, L., Wu, Q., Wang, Y., Ge, F., & Fang, B. (2021a). Identification and anti-oxidant activity of bovine bone collagen-derived novel peptides prepared by recombinant collagenase from Bacillus cereus. Food Chemistry, 349, 129143. https://doi.org/10.1016/j.foodchem.2021.129143 DOI: https://doi.org/10.1016/j.foodchem.2021.129143
Song, Z., Liu, H., Chen, L., Chen, L., Zhou, C., Hong, P., & Deng, C. (2021b). Characterization and comparison of collagen extracted from the skin of the Nile tilapia by fermentation and chemical pretreatment. Food Chemistry, 340, 128139. https://doi.org/10.1016/j.foodchem.2020.128139 DOI: https://doi.org/10.1016/j.foodchem.2020.128139
Sosulski, F. W. & Imafidon, G. I. (1990). Amino acid composition and nitrogen-to-protein conversion factors for animal and plant foods. Journal of Agricultural and Food Chemistry, 38(6), 1351-1356. https://doi.org/10.1021/jf00096a011 DOI: https://doi.org/10.1021/jf00096a011
Sun, S., Gao, Y., Chen, J., & Liu, R. (2022). Identification and release kinetics of peptides from tilapia skin collagen during alcalase hydrolysis. Food Chemistry, 378, 132089. https://doi.org/10.1016/j.foodchem.2022.132089 DOI: https://doi.org/10.1016/j.foodchem.2022.132089
Tawalbeh, D., Ahmad, W. A. N. W., & Sarbon, N. M. (2023). Effect of ultrasound pretreatment on the functional and bioactive properties of legumes protein hydrolysates and peptides: A comprehensive review. Food Reviews International, 39(8), 5423-5445. https://doi.org/10.1080/87559129.2022.2069258 DOI: https://doi.org/10.1080/87559129.2022.2069258
Tawalbeh, D., Kha’sim, M. I., Mhd Sarbon, N., & Sarbon, N. M. (2025). Techno-Functional and Bio-activity Properties of Collagen Hydrolysate and Peptide: A Review. Food Reviews International, 1-29. https://doi.org/10.1080/87559129.2025.2450052 DOI: https://doi.org/10.1080/87559129.2025.2450052
Ulug, S. K., Jahandideh, F., & Wu, J. (2021). Novel technologies for the production of bioactive peptides. Trends in Food Science & Technology, 108, 27-39. https://doi.org/10.1016/j.tifs.2020.12.002 DOI: https://doi.org/10.1016/j.tifs.2020.12.002
Vidal, A. R., Cansian, R. L., Mello, R. de O., Demiate, I. M., Kempka, A. P., Dornelles, R. C. P., Rodriguez, J. M. L., & Campagnol, P. C. B. (2022). Production of Collagens and Protein Hydrolysates with Antimicrobial and Antioxidant Activity from Sheep Slaughter By-Products. Antioxidants, 11(6), 1173. https://doi.org/10.3390/antiox11061173 DOI: https://doi.org/10.3390/antiox11061173
Vidal, A. R., Duarte, L. P., Schmidt, M. M., Cansian, R. L., Fernandes, I. A., de-Oliveira-Mello, R., Demiate, I. M., & Dornelles, R. C. P. (2020). Extraction and characterization of collagen from sheep slaughter by-products. Waste Management, 102, 838-846. https://doi.org/10.1016/j.wasman.2019.12.004 DOI: https://doi.org/10.1016/j.wasman.2019.12.004
Vogelsang-O’dwyer, M., Sahin, A. W., Arendt, E. K., & Zannini, E. (2022). Enzymatic Hydrolysis of Pulse Proteins as a Tool to Improve Techno-Functional Properties. Foods, 11(9), 1307. https://doi.org/10.3390/foods11091307 DOI: https://doi.org/10.3390/foods11091307
Wang, B., Wang, Y. M., Chi, C. F., Luo, H. Y., Deng, S. G., & Ma, J. Y. (2013). Isolation and Characterization of Collagen and Antioxidant Collagen Peptides from Scales of Croceine Croaker (Pseudosciaena crocea). Marine Drugs, 11(11), 4641-4661. https://doi.org/10.3390/md11114641 DOI: https://doi.org/10.3390/md11114641
Wolf, K. L., Sobral, P. J. A., & Telis, V. R. N. (2009). Physicochemical characterization of collagen fibers and collagen powder for self-composite film production. Food Hydrocolloids, 23(7), 1886-1894. https://doi.org/10.1016/j.foodhyd.2009.01.013 DOI: https://doi.org/10.1016/j.foodhyd.2009.01.013
Wulandari, D., Triatmojo, S., Erwanto, Y., & Pranoto, Y. (2016). Physicochemical Properties and Amino Acid and Functional Group Profiles of Gelatin Extracted from Bovine Split Hide Cured by Acid. Pakistan Journal of Nutrition, 15(7), 655–661. https://doi.org/10.3923/pjn.2016.655.661 DOI: https://doi.org/10.3923/pjn.2016.655.661
Xie, Z., Wang, X., Yu, S., He, M., Yu, S., Xiao, H., & Song, Y. (2021). Antioxidant and functional properties of cowhide collagen peptides. Journal of Food Science, 86(5), 1802-1818. https://doi.org/10.1111/1750-3841.15666 DOI: https://doi.org/10.1111/1750-3841.15666
Yu, F., Zong, C., Jin, S., Zheng, J., Chen, N., Huang, J., Chen, Y., Huang, F., Yang, Z., Tang, Y., & Ding, G. (2018). Optimization of Extraction Conditions and Characterization of Pepsin-Solubilised Collagen from Skin of Giant Croaker (Nibea japonica). Marine Drugs, 16(1), 29. https://doi.org/10.3390/md16010029 DOI: https://doi.org/10.3390/md16010029
Yu, P., & Chen, H. (2014). Optimization of Conditions for Enzymatic Production of Collagen Hydrolysates from a Low-Value Acaudina molpadioides and Their Activities. Journal of Food Biochemistry, 38(2), 227-235. https://doi.org/10.1111/jfbc.12041 DOI: https://doi.org/10.1111/jfbc.12041
Zamorano-Apodaca, J. C., García-Sifuentes, C. O., Carvajal-Millán, E., Vallejo-Galland, B., Scheuren-Acevedo, S. M., & Lugo-Sánchez, M. E. (2020). Biological and functional properties of peptide fractions obtained from collagen hydrolysate derived from mixed by-products of different fish species. Food Chemistry, 331, 127350. https://doi.org/10.1016/j.foochem.2020.127350 DOI: https://doi.org/10.1016/j.foodchem.2020.127350
Zhang, Q., Dhir, A., & Kaur, P. (2022). Circular economy and the food sector: A systematic literature review. Sustainable Production and Consumption, 32, 655-668. https://doi.org/10.1016/j.spc.2022.05.010 DOI: https://doi.org/10.1016/j.spc.2022.05.010
Zhang, Q., Wang, Q., Lv, S., Lu, J., Jiang, S., Regenstein, J. M., & Lin, L. (2016a). Comparison of collagen and gelatin extracted from the skins of Nile tilapia (Oreochromis niloticus) and channel catfish (Ictalurus punctatus). Food Bioscience, 13, 41-48. https://doi.org/10.1016/j.fbio.2015.12.005 DOI: https://doi.org/10.1016/j.fbio.2015.12.005
Zhang, Y., Ma, L., & Otte, J. (2016b). Optimization of Hydrolysis Conditions for Production of Angiotensin-Converting Enzyme Inhibitory Peptides from Basa Fish Skin Using Response Surface Methodology. Journal of Aquatic Food Product Technology, 25(5), 684-693. https://doi.org/10.1080/10498850.2014.919049 DOI: https://doi.org/10.1080/10498850.2014.919049
Zhang, Y., Olsen, K., Grossi, A., & Otte, J. (2013). Effect of pretreatment on enzymatic hydrolysis of bovine collagen and formation of ACE-inhibitory peptides. Food Chemistry, 141(3), 2343-2354. https://doi.org/10.1016/j.foodchem.2013.05.058 DOI: https://doi.org/10.1016/j.foodchem.2013.05.058
Publicado
Cómo citar
Número
Sección
Categorías
Licencia
Derechos de autor 2025 Universidad Autónoma de Tamaulipas

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.
Aceptado 2025-09-09
Publicado 2025-09-15