Evaluation of the stability of orange juice capsules obtained by ionic gelation

Authors

  • Juan Francisco Castañón-Rodríguez Universidad Autónoma de Tamaulipas, Unidad Académica de Trabajo Social y Ciencias para el Desarrollo Humano, Centro Universitario, Cd. Victoria, Tamaulipas, México, C. P. 87149.
  • Maricela Guadalupe Soto-Gómez Universidad Autónoma de Tamaulipas, Unidad Académica de Trabajo Social y Ciencias para el Desarrollo Humano, Centro Universitario, Cd. Victoria, Tamaulipas, México, C. P. 87149.
  • Rocío Margarita Uresti-Marín Universidad Autónoma de Tamaulipas, Unidad Académica de Trabajo Social y Ciencias para el Desarrollo Humano, Centro Universitario, Cd. Victoria, Tamaulipas, México, C. P. 87149.

DOI:

https://doi.org/10.29059/cienciauat.v14i2.1285

Keywords:

orange juice, encapsulation, ionic gelation, sodium alginate, pectin

Abstract

The ionic gelation method as an encapsulation technique is based on the interactions between hydrocolloids, which prevent the possibility of damage of bioactive compounds present in foods, such as citrus juice. Therefore, the objective of the present study was to evaluate the stability of the orange juice capsules obtained by ionic gelation using pectin and sodium alginate as encapsulating agents. The effects of the gelling agents on the stability were determined by the measurement of weight loss, diameter, color attributes, diameter, macroscopic morphology, density in elaborate capsules. In addition, a factor analysis design was used by modifying the concentration of high methoxyl pectin (1.5 %, 2 % and 2.5 % w/v), pH (2.5, 3.5 and 4.5) and total soluble solids (TSS) at 5 ºBrix and 15 ºBrix, maintaining the concentration of sodium alginate constant at 0.5 % (w/v). The capsules were stored at room temperature (26 ºC) and refrigeration (4 ºC) for 12 d. They mainly presented a spherical shape (> 45 %). The color attributes remained stable even after 12 d of storage. The initial TSS and pH influenced the stability of the capsules. At a concentration of 15 ºBrix and pH 2.5, the capsules could not be adequately formed, capsules presenting greater syneresis and amorphous morphologies. However, the orange juice capsules remained stable for more than 2 weeks and with stable quality parameters when stored at refrigeration temperature (4 ºC), pectin concentration 2 % (w/v), sodium alginate 0.5 % (w/v), TTS 15 ºBrix and pH 2.5. The ionic gelation method through encapsulation offers an alternative to extend the shelf life of the juice and the development of new products made from this citrus.

References

Agulhon, P., Robitzer, M., Habas, J. P., and Quignard, F. (2014). Influence of both cation and alginate nature on the rheological behavior of transition metal alginate gels. Carbohydrate Polymers. 112: 525-531.

Burey, P., Bhandari, B. R., Howes, T., and Gidley, M. J. (2008). Hydrocolloid gel particles: formation, characterization, and application. Critical Reviews in Food Science and Nutrition. 48(5): 361-377.

Dias, M. I., Ferreira, I. C., and Barreiro, M. F. (2015). Microencapsulation of bioactives for food applications. Food & Function. 6(4): 1035-1052.

Draget, K. I. and Taylor, C. (2011). Chemical, physical and biological properties of alginates and their biomedical implications. Food Hydrocolloids. 25(2): 251-256.

Einhorn-Stoll, U. (2018). Pectin-water interactions in foods–From powder to gel. Food hydrocolloids. 78: 109-119.

Einhorn-Stoll, U., Kastner, H., Hecht, T., Zimathies, A., and Drusch, S. (2015). Modification and physico-chemical properties of citrus pectin–Influence of enzymatic and acidic demethoxylation. Food Hydrocolloids. 51: 338-345.

García, C. G., González, M. M., Ochoa, L. M. y Medrano, H. R. (2004). Microencapsulación de jugo de cebada verde mediante secado por aspersión. Ciencia y Tecnología Alimentaria. 4(4): 262-266.

Garg, M. L., Wood, L. G., Singh, H., and Moughan, P. J. (2006). Means of delivering recomemended levels of long chain n-3 polyinsaturated fatty acids in human diets. Journal of Food Science. 71(5): 66-71.

Gouin, S. (2004). Microencapsulation: industrial appraisal of existing technologies and trends. Trends in Food Science & Technology. 15(7-8): 330-347.

Kastner, H., Einhorn-Stoll, U., and Drusch, S. (2019). Influence of enzymatic and acidic demethoxylation on structure formation in sugar containing citrus pectin gels. Food Hydrocolloids. 89: 207-215.

King, A. H. (1983). Brown seaweed extracts (alginates). In Martin Glicksman (Ed.), Food Hydrocoloids (pp. 115-183). Florida: CRC Press.

Krasaekoopt, W., Bhandari, B., and Deeth, H. (2003). Evaluation of encapsulation techniques of probiotic for yoghurt. International Dairy Journal. 13(1): 3-13.

Licona, J. C. (2009). Estudio de mercado para identificación de necesidades de infraestructura logítica para la comercialización de jugo de cítricos en Veracruz. Martínez de la Torre, Veracruz: FIRCO. [En línea]. Disponible en: http://www.sagarpa.mx/agronegocios/Documents/Estudios_promercado/SISTPROD_CITRICOS.pd. Fecha de consulta: 10 de diciembre de 2018.

Li-Ying, N., Ji-Hong, W., Xiano-Jun, L., Fang, C., Zheng-Fu, W., Guang-Hua, Z., and Xiao-Song, H. (2008).

Physicochemical characteristics of orange juice samples from seven cultivars. Agricultural Sciences in China. 7(1): 41-47.

Liu, Y., Dong, M., Yang, Z., and Pan, S. (2016). Antidiabetic effect of citrus pectin in diabetic rats and potential mechanism via PI3K/Akt signaling pathway. International Journal of Biological Macromolecules. 89: 484-488.

Lupo, B. P., González, C. A., and Maestro, A. G. (2012). Microencapsulación con alginato en alimentos. Técnicas y aplicaciones. Revista Venezolana de Ciencia y Tecnología de Alimentos. 3(1): 130-151.

Mohnen, D. (2008). Pectin structure and biosynthesis. Current Opinion Plant Biology. 11(3): 266-277.

Naqash, F., Masoodi, F. A., Rather, S. A., Wani, S. M., and Gani, A. (2017). Emerging concepts in the nutraceutical and functional properties of pectin—A Review. Carbohydrate Polymers. 168: 227-239.

Nedovic, V., Kalusevic, A., Manojlovic, V., Levic, S., and Bugarski, B. (2011). An overview of encapsulation technologies for food applications. Procedia Food Science. 1: 1806-1815.

Orive, G., Santos, E., Poncelet, D., Hernández, R. M., Pedraz, J. L., Wahlberg, L. U., …, and Emerich, D. (2015). Cell encapsulation: technical and clinical advances. Trends in Pharmacological Sciences. 36(8): 537-546.

Parra, R. H. (2010). Revisión: Microencapsulación de Alimentos. Revista Facultad Nacional de Agronomía Medellín. 63: 5669-5684.

Peanparkdee, M., Iwamoto, S., and Yamauchi, R. (2016). Microencapsulation: a review of applications in the food and pharmaceutical industries. Reviews in Agricultural Science. 4: 56-65.

Pérez, L. C., Reyes, K. B., Godines, A. H. y Castillo, R. P. (2012). Desarrollo y caracterización de golosinas con ingredientes de intéres nutrimental. CienciaUAT. 6(3): 50-55.

Rivera, E. A. T. (2013). Evaluación de la capacidad de esterificación de quitosano como sustituto de alginato en la elaboración de falso caviar. Tesis de Ingeniería Química de Alimentos, Universidad Central de Ecuador, Ecuador, Quito. [En línea]. Disponible en: http://www.dspace.uce.edu.ec/handle/25000/1863. Fecha de consulta: 14 de enero de 2019.

SAGARPA, Secretaría de Agricultura, Ganadería, Desarrollo Rural, Pesca y Alimentación (2015). Situacion de la citricultura en Nuevo León. Corporación para el desarrollo agropecuario de Nuevo León. [En línea]. Disponible en: http://www.camponl.gob.mx/oeidrus/docs/citricultura.pdf. Fecha de consulta: 27 de noviembre de 2018.

Sandoval, M. P., Cu, T. C., Peraza, G. M., and Acereto, P. O. M. E. (2016). Introducción en los procesos de encapsulación de moléculas nutracéuticas. En M. E. Ramírez-Ortiz (Ed.), Alimentos Funcionales de Hoy (pp. 181-218). Barcelona, España: Omnia Science.

Smidsrod, O. and Draget, K. I. (1997). Alginate gelatión technologies. In E. Dickenson, B. Bergenstahl (Ed.), Food colloids, proteins, lipids and polysaccharides (pp. 279-293). Lancaster: Ediciones Royal Society of Chemistry.

Venkatesan, J., Lowe, B., Anil, S., Manivasagan, P., Kheraif, A. A. A., Kang, K. H., and Kim, S. K. (2015). Seaweed polysaccharides and their potential biomedical applications. Starch-Stärke. 67(5-6): 381-390.

Voo, W. P., Ravindra, P., Tey, B. T., and Chan, E. S. (2011). Comparison of alginate and pectin based beads for production of poultry probiotic cells. Journal of Bioscience and Bioengineering. 111(3): 294-299.

Willats, W. G. T., Knox, J. P., and Mikkelsen, J. D. (2006). Pectin: New insights into an old polymer are starting to gel. Trends Food Science Technology. 17(3): 97-104.

Published

2020-01-31

How to Cite

Castañón-Rodríguez, J. F., Soto-Gómez, M. G., & Uresti-Marín, R. M. (2020). Evaluation of the stability of orange juice capsules obtained by ionic gelation. CienciaUAT, 14(2), 117-132. https://doi.org/10.29059/cienciauat.v14i2.1285

Issue

Section

Biotechnology and Agricultural Sciences