Flow pattern effect on the pressure drop of biphasic flow through porous media from a fractal dimension perspective
DOI:
https://doi.org/10.29059/cienciauat.v14i2.1308Keywords:
fractal reservoir, porous bed, complex flow, fractional equation of transport, pressure drop predictionAbstract
The description of the behavior of a biphasic flow through porous beds by means of models based on the equations of transport phenomena is made difficult due to the geometric irregularity of the channels that are formed between the solid particles that make up the bed. Deterministic models developed for single-phase flows require the adjustment of empirical constants and cannot be extrapolated to biphasic flows, where the flow pattern generated in the system significantly influences the behavior of the total flow and the frictional pressure losses. Therefore, in this paper, we present a model to describe the behavior of the biphasic flow in relation to the flow pattern and the morphology, dimensions, and operating conditions of the porous bed, whose obtainment was based on a hierarchy that used the equations for conservation of momentum, fractal geometry and fractional differential calculus jointly. The model predicts that, for the same composition of the biphasic flow, the flow pattern significantly influences friction pressure losses, with an increase when one of the phases is dispersed within the other. On the other hand, the increase in the fractal dimension of the pores, in turn, causes an increase in pressure loss due to friction. The model has limitations associated with the considerations established during its collection, since it is only valid when the effects of surface tension are more significant than the gravitational effects, the effects of the latter being disregarded on the flow pattern, as well as for the stationary state.
References
Basu, M., Zahoor, A., and Khan, R. A. (2019). Review of Fluid Flow and Heat Transfer through Microchannels. Journal of Scientific and Technical Advancements. 5(1): 17-20.
Bear, J. (2018). Modeling Phenomena of Flow and Transport in Porous Media. Springer: Cham. 1-98 Pp. DOI: https://doi.org/10.1007/978-3-319-72826-1_1
Berg, C. F. (2014). Permeability description by characteristic length, tortuosity, constriction and porosity. Transport in porous media. 103(3): 381-400. DOI: https://doi.org/10.1007/s11242-014-0307-6
Flury, M. and Aramrak, S. (2017). Role of air-water interfaces in colloid transport in porous media: A review. Water Resources Research. 53(7): 5247-5275. DOI: https://doi.org/10.1002/2017WR020597
Hassanean, M. H., Awad, M. E., Marwan, H., Bhran, A. A., and Kaoud, M. (2016). Studying the rheological properties and the influence of drag reduction on a waxy crude oil in pipeline flow. Egyptian Journal of Petroleum. 25(1): 39-44. DOI: https://doi.org/10.1016/j.ejpe.2015.02.013
Hjelmeland, O. S. and Larrondo, L. E. (1986). Experimental investigation of the effects of temperature, pressure, and crude oil composition on interfacial properties. SPE Reservoir Engineering. 1(04): 321-328. DOI: https://doi.org/10.2118/12124-PA
Huang, S., Yao, Y., Zhang, S., Ji, J., and Ma, R. (2018). A Fractal Model for Oil Transport in Tight Porous Media. Transport in Porous Media. 121(3):725-739. DOI: https://doi.org/10.1007/s11242-017-0982-1
Ismail, A. S. I., Ismail, I., Zoveidavianpoor, M., Mohsin, R., Piroozian, A., Misnan, M. S., and Sariman, M. Z. (2015). Review of oil–water through pipes. Flow Measurement and Instrumentation. 45:357-374. DOI: https://doi.org/10.1016/j.flowmeasinst.2015.07.015
Kamal, M. S. (2016). A review of gemini surfactants: potential application in enhanced oil recovery. Journal of Surfactants and Detergents. 19(2): 223-236. DOI: https://doi.org/10.1007/s11743-015-1776-5
Kleinstreuer, C. (2017). Two-Phase Flow: Theory and Applications. CRC EE.UU: Press. 69-99 Pp.
Kokubun, M. A. E., Radu, F. A., Keilegavlen, E., Kumar, K., and Spildo, K. (2018). Transport of polymer particles in an oil-water flow in porous media: enhancing oil recovery. Transport in Porous Media. 126(2): 501-519. DOI: https://doi.org/10.1007/s11242-018-1175-2
Ledesma-Durán, A., Hernández, S. I., and Santamaría-Holek, I. (2017). Effect of Surface Diffusion on Adsorption–Desorption and Catalytic Kinetics in Irregular Pores. II. Macro-Kinetics. The Journal of Physical Chemistry C. 121(27): 14557-14565. DOI: https://doi.org/10.1021/acs.jpcc.7b03653
Mahzari, P., Taura, U., and Sohrabi, M. (2018). An improved methodology for estimation of two-phase relative permeability functions for heavy oil displacement involving compositional effects and instability. Computational Geosciences. 22(4): 975-991. DOI: https://doi.org/10.1007/s10596-017-9714-4
Mandelbrot, B. B. (1989). Multifractal measures, especially for the geophysicist. In C. H. Scholz and B. B. Mandelbrot (Eds.), Fractals in geophysics (pp. 5-42). Basel: Birkhäuser. DOI: https://doi.org/10.1007/978-3-0348-6389-6_2
Mendoza, C. I. and Santamaria-Holek, I. (2010). Rheology of concentrated emulsions of spherical droplets. Applied Rheology. 20(2): 16-23.
Mucharam, L., Rahmawati, S., and Ramadhani, R. (2017). Drag reducer selection for oil pipelinebased laboratory experiment. Modern Applied Science. 12(1): 112. DOI: https://doi.org/10.5539/mas.v12n1p112
Perazzo, A., Tomaiuolo, G., Preziosi, V., and Guido, S. (2018). Emulsions in porous media: From single droplet behavior to applications for oil recovery. Advances in colloid and interface science. 256: 305-325. DOI: https://doi.org/10.1016/j.cis.2018.03.002
Pesavento, F., Schrefler, B. A., and Sciumè, G. (2017). Multiphase flow in deforming porous media: A review. Archives of Computational Methods in Engineering. 24(2): 423-448. DOI: https://doi.org/10.1007/s11831-016-9171-6
Piroozian, A., Hemmati, M., Ismail, I., Manan, M. A., Rashidi, M. M., and Mohsin, R. (2017). An experimental study of flow patterns pertinent to waxy crude oil-water two-phase flows. Chemical Engineering Science. 164: 313-332. DOI: https://doi.org/10.1016/j.ces.2017.02.026
Rahner, M. S., Halisch, M., Fernandes, C. P., Weller, A., and dos-Santos, V. S. S. (2018). Fractal dimensions of pore spaces in unconventional reservoir rocks using X-ray nano-and micro-computed tomography. Journal of Natural Gas Science and Engineering. 55: 298-311. DOI: https://doi.org/10.1016/j.jngse.2018.05.011
Rasband, W. S. (2018). ImageJ, U. S. National Institutes of Health, Bethesda, Maryland, USA. [En línea]. Disponible en: https://imagej.nih.gov/ij/,1997-2018. Fecha de consulta: 2 de julio de 2019.
Suárez-Domínguez, E. J. (2017). Estudio del transporte estratificado de un líquido de alta viscosidad y otro de baja viscosidad, Tesis doctoral, Universidad Nacional Autónoma de México. [En línea]. Disponible en: http://132.248.52.100:8080/xmlui/handle/132.248.52.100/14368. Fecha de consulta: 26 de septiembre de 2019.
Suárez-Domínguez, E. J., Pérez-Sánchez, J. F., Palacio-Pérez, A., and Izquierdo-Kulich, E. (2018). New mixing rule for analysis of the influence of a formulation on an extraheavy oil crude viscosity. Revista Mexicana de Ingeniería Química. 17(1):99-106. DOI: https://doi.org/10.24275/10.24275/uam/izt/dcbi/revmexingquim/2018v17n1/Suarez
Tan, X. H., Li, X. P., Zhang, L. H., Liu, J. Y., and Cai, J. (2015). Analysis of transient flow and starting pressure gradient of power-law fluid in fractal porous media. International Journal of Modern Physics C. 26(04): 1550045. DOI: https://doi.org/10.1142/S012918311550045X
Valdes-Perez, A., Pulido, H., Cinco-Ley, H., and Galicia-Muñoz, G. (2012). Discretization of the resistivity, capillary pressure and relative permeability for naturally fractured reservoirs. In Proceedings: Thirty-Seventh Workshop on Geothermal Reservoir Engineering. [En línea]. Disponible en: https://pangea.stanford.edu/ERE/pdf/IGAstandard/SGW/2012/Valdesperez1.pdf. Fecha de consulta: 25 de julio de 2019.
Valdéz-Cepeda, R. D. and Olivares-Sáenz, E. (1998). Geometría fractal en la ciencia del suelo. Terra Latinoamericana. 16(3): 277-288.
Wang, W., Fan, D., Sheng, G., Chen, Z., and Su, Y. (2019). A review of analytical and semi-analytical fluid flow models for ultra-tight hydrocarbon reservoirs. Fuel. 256: 115737. DOI: https://doi.org/10.1016/j.fuel.2019.115737
Wopara, O. F. and Iyuke, S. E. (2018). Review of studies on pore-network modeling of wettability effects on waterflood oil recovery. Journal of Petroleum and Gas Engineering. 9(2): 11-22. DOI: https://doi.org/10.5897/JPGE2015.0222
Published
How to Cite
License
Copyright (c) 2020 CienciaUAT

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.