Participación del transporte simplástico de las auxinas durante el desarrollo de las plantas

Autores/as

  • Elizabeth Carrillo-Flores Universidad Michoacana de San Nicolás de Hidalgo, Instituto de Investigaciones Químico Biológicas, Avenida Francisco J. Múgica s/n, Ciudad, Universitaria, colonia Felicitas del Rio, Morelia, Michoacán, México, C. P. 58030.
  • Asdrúbal Aguilera-Méndez Universidad Michoacana de San Nicolás de Hidalgo, Instituto de Investigaciones Químico Biológicas, Avenida Francisco J. Múgica s/n, Ciudad, Universitaria, colonia Felicitas del Rio, Morelia, Michoacán, México, C. P. 58030.
  • Ma. Elena Mellado-Rojas Universidad Michoacana de San Nicolás de Hidalgo, Instituto de Investigaciones Químico Biológicas, Avenida Francisco J. Múgica s/n, Ciudad, Universitaria, colonia Felicitas del Rio, Morelia, Michoacán, México, C. P. 58030.
  • Elda Beltrán-Peña Universidad Michoacana de San Nicolás de Hidalgo, Instituto de Investigaciones Químico Biológicas, Avenida Francisco J. Múgica s/n, Ciudad, Universitaria, colonia Felicitas del Rio, Morelia, Michoacán, México, C. P. 58030.

DOI:

https://doi.org/10.29059/cienciauat.v18i2.1833

Palabras clave:

auxinas, callosa, desarrollo vegetal, plasmodesmos, transporte simplástico

Resumen

La apropiada organogénesis de las plantas, durante su ciclo de vida, propicia su desarrollo y la adaptación a diferentes condiciones ambientales. Diversas fitohormonas regulan el desarrollo vegetal, pero la auxina denominada ácido indol-3-acético (AIA) es una de las más importantes. El AIA se sintetiza en la parte aérea de la planta y se moviliza a los tejidos demandantes por un transporte rápido que utiliza el floema y por el transporte polar de auxinas (TPA). Recientemente, se ha demostrado que las auxinas también se movilizan mediante el transporte simplástico (TS) a través de los plasmodesmos (PD), cuya apertura o cierre está regulada respectivamente por la degradación o la deposición de la callosa. El objetivo del presente trabajo fue profundizar en los avances sobre la participación del transporte simplástico de las auxinas durante el desarrollo vegetal, así como la degradación o deposición de la callosa, en el cierre o apertura de los PD, para regular el desarrollo de algunos órganos de Arabidopsis thaliana. La intervención de las proteínas PDLP5 es determinante para la deposición de la callosa en los PD, lo que regula la distribución de la auxina e impacta en la formación radicular, especialmente en las raíces laterales. La participación del TS es importante para desarrollar la actividad de las auxinas, lo cual favorece la formación radicular, necesaria en la mejora de absorción de nutrientes de las plantas. Este conocimiento puede ser utilizado para mejorar las plantas de interés agronómico.

Citas

Amsbury, S., Kirk, P., and Benítez-Alfonso, Y. (2018). Emerging models on the regulation of intracellular transport by plasmodesmata-associated callose. Journal of Experimental Botany. 69(1): 105-115. DOI: https://doi.org/10.1093/jxb/erx337

Band, R. L. (2021). Auxin fluxes through plasmodesmata. New Phytologist. 231(5): 1686-1692. DOI: https://doi.org/10.1111/nph.17517

Barr, Z. and Tilsne, J. (2023). Cell-to-cell connectivity assays for the analysis of cytoskeletal and other regulators of plasmodesmata. Methods in Molecular Biology. 2604: 193-202. DOI: https://doi.org/10.1007/978-1-0716-2867-6_14

Benitez-Alfonso, Y., Faulkner, C., Pendle, A., Miyashima, S., Helariuta, Y., and Maule, A. (2013). Symplastic intercellular connectivity regulates lateral root patterning. Development Cell. 26(2): 136-147. DOI: https://doi.org/10.1016/j.devcel.2013.06.010

Brunkard, J. O. (2020). Exaptive evolution of target of rapamycin signaling in multicellular eukaryotes. Development Cell. 54(2): 142-155. DOI: https://doi.org/10.1016/j.devcel.2020.06.022

Cao, X., Yang, H., Shang, C., Sang, M., Liu, L., and Cheng, J. (2019). The roles of auxin biosynthesis YUCCA gene family in plants. International Journal of Molecular Science. 20(24): 6343. DOI: https://doi.org/10.3390/ijms20246343

Chang, W., Guo, Y., Zhang, H., Liu, X., and Guo, L. (2020). Same actor in different stages: Genes in shoot apical meristem maintenance and floral meristem determinacy in Arabidopsis. Frontiers in Ecology and Evolution. 8: 89. DOI: https://doi.org/10.3389/fevo.2020.00089

Chen, X. Y., Liu, L., Lee, E., Han, X., Rim, Y., Chu, H., and Kim, J. Y. (2009). The Arabidopsis callose synthase gene GSL8 is required for cytokinesis and cell patterning. Plant Physiology. 150(1): 105-113. DOI: https://doi.org/10.1104/pp.108.133918

Faulkner, C. (2018). Plasmodesmata and the symplast. Current Biology. 28(24): R1374-R1378. DOI: https://doi.org/10.1016/j.cub.2018.11.004

Finet, C. and Jaillais, Y. (2012). AUXOLOGY: When auxin meets plant evo devo. Developmental Biology. 365(1): 19-31. DOI: https://doi.org/10.1016/j.ydbio.2012.05.039

Fuchs, M. and Lohmann, J. U. (2020). Aiming for the top: non-cell autonomous control of shoot stem cell in Arabidopsis. Journal Plant Research. 133: 297-309. DOI: https://doi.org/10.1007/s10265-020-01174-3

Gaillochet, C. and Lohmann, J. U. (2015). The never-ending story: from pluripotency to plant developmental plasticity. Development. 142(13): 2237-2249. DOI: https://doi.org/10.1242/dev.117614

Gao, C., Liu, X., De-Storme, N., Jensen, K. H., Xu, Q., Yang, J., …, and Liesche, J. (2020). Directionality of plasmodesmata-mediated transport in Arabidopsis leaves support auxin channeling. Current Biology. 30(10): 1970-1977. DOI: https://doi.org/10.1016/j.cub.2020.03.014

García-Gómez, M. L., Garay-Arroyo, A., García-Ponce, B., Paz-Sánchez, M., and Álvarez-Buylla, E. R. (2021). Hormonal regulation of stem cell proliferation at the Arabidopsis thaliana root stem cell niche. Frontiers in Plant Science. 12: 628491. DOI: https://doi.org/10.3389/fpls.2021.628491

Habets, M. E. J. and Offringa, R. (2014). PIN-driven polar auxin transport in plant developmental plasticity: a key target for environmental and endogenous signals. New Phytologist. 203(2): 362-377. DOI: https://doi.org/10.1111/nph.12831

Han, H., Adamowski, M., Qi, L., Alotaibi, S. S., and Friml, J. (2021). PIN-mediated polar auxin transport regulations in plant tropic response. New Phytologist. 232: 510-522. DOI: https://doi.org/10.1111/nph.17617

Han, X., Hyun, T. K., Zhang, M., Kumar, R., Koh, E. J., Kang, B. H., and Kim, J. Y. (2014). Auxin-callose-mediated plasmodesmal gating is essential for tropic auxin gradient formation and signaling. Developmental Cell. 28(2): 132-146. DOI: https://doi.org/10.1016/j.devcel.2013.12.008

Hernández-Hernández, V., Benítez, M., and Boudaoud, A. (2020). Interplay between turgor pressure and plasmodesmata during plant development. Journal of Experimental Botany. 71(3): 768-777. DOI: https://doi.org/10.1093/jxb/erz434

Hussain, S., Nanda, S., Zhang, J., Rehmani, M. I. A., Suleman, M., Li, G., and Hou, H. (2021). Auxin and cytokinin interplay during leaf morphogenesis and phyllotaxy. Plants. 10(8): 1732. DOI: https://doi.org/10.3390/plants10081732

Jiang, Y., Zheng, W., Li, J., Lui, P., Zhong, K., Jin, P., …, and Chen, J. (2021). NbWRKY40 positively regulates the response of Nicotiana benthamiana to tomato mosaic virus via salicylic acid signaling. Frontiers in Plant Science. 11: 603518. DOI: https://doi.org/10.3389/fpls.2020.603518

Kumar, N. and Iyer-Pascuzzi, A. S. (2020). Shedding the last layer: Mechanisms of root cap cell release. Plants. 9(3): 308. DOI: https://doi.org/10.3390/plants9030308

Lee, H., Ganguly, A., Lee, R. D., Park, M., and Cho, H. T. (2020). Intracellular localized PIN-FORMED8 promotes lateral root emergence in Arabidopsis. Frontiers in Plant Science. 10: 1808. DOI: https://doi.org/10.3389/fpls.2019.01808

Leyser, O. (2018). Auxin signaling. Plant Physiology. 176(1): 465-479. DOI: https://doi.org/10.1104/pp.17.00765

Li, N., Lin, Z., Yu, P., Zeng, Y., Du, S., and Huang, L. J. (2023). The multifarious role of callose and callose synthase in plants development and environment interactions. Frontiers in Plant Science. 14: 1183402. DOI: https://doi.org/10.3389/fpls.2023.1183402

Li, R., Wei, Z., Li, Y., Shang, X., Cao, Y., Duan, L., …, and Ma., L. (2022a). Ski-interacting protein interacts with shoot meristem less to regulate shoot apical meristem formation. Plant Physiology. 189(4): 2193-2209. DOI: https://doi.org/10.1093/plphys/kiac241

Li, Z., Liu, S. L., Montes-Serey, C., Walley, J. W., and Aung, K. (2022b). Plasmodesmata-located proteins regulate plasmodesmal function at specific cell interface in Arabidopsis. BioRxiv. 08.05.50299. DOI: https://doi.org/10.1101/2022.08.05.502996

Liu, J., Zhang, L., and Yan, D. (2021). Plasmodes-matainvolved battle against pathogens and potential strategies for strengthening hosts. Frontiers in Plant Science. 12: 644870. DOI: https://doi.org/10.3389/fpls.2021.644870

Malamy, J. E. and Benfey, P. N. (1997). Organization and cell differentiation in lateral roots of Arabidopsis thaliana. Development. 124(1): 33-44. DOI: https://doi.org/10.1242/dev.124.1.33

Mellor, N. L., Voß, U., Janes, G., Bennett, M. J., Wells, D. M., and Band, L. R. (2020). Auxin fluxes through plasmodesmata modify root-tip auxin distribution. Development. 147(6): dev181669. DOI: https://doi.org/10.1242/dev.181669

Michniewicz, M., Brewer, P. B., and Friml, J. (2007). Polar auxin transport and asymmetric auxin distribution. The Arabidopsis Book/American Society of Plant Biologists. 5: e0108.

Mishra, B. S., Sharma, M., and Laxmi, A. (2022). Role of sugar and auxin crosstalk in plant growth and development. Physiologia Plantarum. 174(1): e13546. DOI: https://doi.org/10.1111/ppl.13546

Nie, P., Li, X., Wang, S., Guo, J., Zhao, H., and Niu, D. (2017). Induced system resistance against Botrytis cinerea by Bacillus cereus AR156 through a JA/ET-and NPR1-dependent signaling pathway and activates PAMP-triggers immunity in Arabidopsis. Frontiers in Plant Science. 8: 238. DOI: https://doi.org/10.3389/fpls.2017.00238

Nishikawa, S., Zinkl, G. M., Swanson, R. J., Maruyama, D., and Preuss, D. (2005). Callose (beta-1 3 glucan) is essential for Arabidopsis pollen wall patterning, but not tube growth. BMC Plant Biology. 5(1): 1-9. DOI: https://doi.org/10.1186/1471-2229-5-22

Ötvos, K., Marconi, A., Vega, A., O´Brien, J., Johnson, A., Abualia, R., and Benková, E. (2019). Modulation of plant root growth by nitrogen source-defined regulation of polar auxin transport. The EMBO Journal. 40(3): e106862. DOI: https://doi.org/10.15252/embj.2020106862

Peris, L. C. I., Rademacher, E. H., and Weijers, D. (2010). Green beginnings-pattern formation in the early plant embryo. Current Topics in Developmental Biology. 91: 1-27. DOI: https://doi.org/10.1016/S0070-2153(10)91001-6

Peters, W. S., Jensen, K. H., Stone, H. A., and Knoblauch, K. (2021). Plasmodesmata and the problems with size: Interpreting the confusion. Journal of Plant Physiology. 257: 153341. DOI: https://doi.org/10.1016/j.jplph.2020.153341

Robert, H. S. and Friml, J. (2009). Auxin and other signal on the move in plants. Nature Chemical Biology. 5: 325-332. DOI: https://doi.org/10.1038/nchembio.170

Rosquete, M. R., Barbez, E., and Kleine-Vehn, J. (2012). Cellular auxin homeostasis: gatekeeping in housekeeping. Molecular Plant. 5(4): 772-786. DOI: https://doi.org/10.1093/mp/ssr109

Rutschow, H. L., Baskin, T. I., and Kramer, E. M. (2011). Regulation of solute flux through plasmodes mata in the root meristem. Plant Physiology. 155(4): 1817-1826. DOI: https://doi.org/10.1104/pp.110.168187

Sager, R., Bennett, M., and Lee, J. Y. (2021). A tale of two domains pushing lateral roots. Trends in Plant Science. 26(8): 770-779. DOI: https://doi.org/10.1016/j.tplants.2021.01.006

Sager, R., Wang, X., Hill, K., Yoo, B. C., Caplan, J., Nedo, A., and Lee, J. Y. (2020). Auxindependent control of a plasmodesmal regulator creates a negative feedback loop modulating lateral root emergence. Nature Communications. 11(1): 364. DOI: https://doi.org/10.1038/s41467-019-14226-7

Sauer, M. and Kleine-Vehn, J. (2019). PIN-FORMED and PIN-LIKES auxin transport facilitators. Development. 146(15): dev168088. DOI: https://doi.org/10.1242/dev.168088

Scarpella, E., Barkoulas, M., and Tsiantis, M. (2010). Control of leaf and vein development by auxin. Cold Spring Harbor Perspectives in Biology. 2(1): a001511. DOI: https://doi.org/10.1101/cshperspect.a001511

Schaller, G. E., Bishopp, A., and Kieber, J. J. (2015).

The Yin-Yang of hormones: cytokinin and auxin interactions in plant development. The Plant Cell. 27(1): 44-63. DOI: https://doi.org/10.1105/tpc.114.133595

Scheres, B. (2007). Stem-cell niches: nursery rhymes across kingdoms. Nature Reviews Molecular Cell Biology. 8(5): 345-354. DOI: https://doi.org/10.1038/nrm2164

Simpson, C., Thomas, C., Findlay, K., Bayer, E., and Maule, A. J. (2009). An Arabidopsis GPI-anchor plasmodesmal neck protein with callose binding activity and potential to regulate cell to-cell trafficking. The Plant Cell. 21(2): 581-594. DOI: https://doi.org/10.1105/tpc.108.060145

Strotmann, A. I. and Stahl, Y. (2021). At the root of quiescence: function and regulation of the quiescent center. Journal of Experimental Botany. 72(19): 6716-6726. DOI: https://doi.org/10.1093/jxb/erab275

Taiz, L. and Zeiger, E. (2010). Auxin: The first discovered plant growth hormone. In L. Taiz, L. and E. Zeiger (Eds.), Plant Physiology, (Fifth edition). (pp. 545-582). Massachusetts U.S.A. Sinauer Associates Inc, Publishers.

Tee, E. E., Johnston, M. G., Papp, D., and Faulkner, C. (2023). A PDLP-NHL3 complex integrates plasmodesmal immune signaling cascades. Proceedings of the National Academy of Sciences. 120(17): e2216397120. DOI: https://doi.org/10.1073/pnas.2216397120

Thomas, C. L., Mayer, E. M., Ritzenthaler, C., Fernandez-Calvino, L., and Maule, A. J. (2008). Specific targeting of a plasmodesmal protein affecting cell-to-cell communication. PLoS Biology. 6(1): e7. DOI: https://doi.org/10.1371/journal.pbio.0060007

Torres-Martínez, H. G., Rodríguez-Alonso, G., Shishkova, S., and Dubrovsky, J. G. (2019). Lateral root primordium morphogenesis in angiosperms. Frontiers in Plant Science. 10: 206. DOI: https://doi.org/10.3389/fpls.2019.00206

Tylewicz, S., Petterle, A., Marttila, S., Miskolczi, P., Azeez, A., and Bhalerao, R. P. (2018). Photoperiodic control of seasonal growth is mediated by ABA ac-tion on cell-cell communication. Science. 350(6385): 212-215. DOI: https://doi.org/10.1126/science.aan8576

Uchida, N. and Torii, K. U. (2019). Stem cells within the shoot apical meristem: identity, arrangement and communication. Cellular and Molecular Life Sciences. 76(6): 1067-1080. DOI: https://doi.org/10.1007/s00018-018-2980-z

Vatén, A., Dettmer, J., Wu, S., Stierhor, Y. D., Miyashima, S., Yadav, S. R., …, and Helariutta, Y. (2011). Callose biosynthesis regulates symplastic trafficking during root development. Developmental Cell. 21(6): 1144-1155. DOI: https://doi.org/10.1016/j.devcel.2011.10.006

Vázquez-Chimalhua, E., López-Bucio, J., Valencia- Cantero, E. y Beltrán-Peña, E. (2018). Mecanismos moleculares que controlan el desarrollo de los meristemos en plantas. En E. Beltrán-Peña, J. López-Bucio y M. Martínez-Trujillo (Eds.), Fronteras en la biología: Señalización y comunicación de las plantas (pp. 28-39). Morelia: Morevalladolid.

Vicente-Hernández, A., Salgado-Garciglia, R., Valencia-Cantero, E., Ramírez-García, A., García-Juárez, P., and Macías-Rodríguez, L. (2019). Bacillus methylotrophicus Ma-96 stimulates the growth of strawberry (Fragaria X ananassa ‘Aromas’) plants in vitro and slows Botrytis cinerea infection by two different methods of interaction. Journal of Plant Growth Regulation. 38(3): 765-777. DOI: https://doi.org/10.1007/s00344-018-9888-6

Wang, A. (2021). Cell-to-cell movement of plant viruses via plasmodesmata: a current perspective on potyviruses. Current Opinion in Virology. 48: 10-16. DOI: https://doi.org/10.1016/j.coviro.2021.03.002

Wang, Y. and Jiao, Y. (2023). Cell signaling in the shoot apical meristem. Plant Physiology. 193(1): 70-82. DOI: https://doi.org/10.1093/plphys/kiad309

Wu, S. W., Kumar, R., Iswanto, A. B. B., and Kim, J. Y. (2018). Callose balancing at plasmodesmata. Journal of Experimental Botany. 69(22): 5325-5339. DOI: https://doi.org/10.1093/jxb/ery317

Zambryski, P. (2004). Cell-to-cell transport of proteins and fluorescent tracers via plasmodesmata during plant development. Journal of Cell Biology. 164(2): 165-168. DOI: https://doi.org/10.1083/jcb.200310048

Zambryski, P. and Crawford, K. (2000). Plasmo-desmata: gatekeepers for cell-to-cell transport of developmental signals in plants. Annual Review of Cell and Developmental Biology. 16: 393-421. DOI: https://doi.org/10.1146/annurev.cellbio.16.1.393

Zavaliev, R., Ueki, S., Epel, B. L., and Citovsky, V. (2011). Biology of callose (ß-1,3-glucan) turnover at plasmodesmata. Protoplasma. 248: 117-130. DOI: https://doi.org/10.1007/s00709-010-0247-0

Zažímolová, E., Krecek, P., Skůpa, O., Hoyerová, K., and Patrásek, J. (2007). Polar transport of the plant hormone auxin- the role of PIN-FORMED (PIN) proteins. Cellular and Molecular Life Sciences. 64(13): 1621-1637. DOI: https://doi.org/10.1007/s00018-007-6566-4

Zhang, J. and Peer, W. A. (2017). Auxin homeostasis: the DAO of catabolism. Journal of Experimental Botany. 68(12): 3145-3154. DOI: https://doi.org/10.1093/jxb/erx221

Zhang, Y., Yu. J., Xu, X., Wang, R., Liu, Y., Huang, S., …, and Wei, Z. (2022). Molecular mechanisms of diverse auxin responses during plant growth and development. International Journal of Molecular Science. 23(20): 12495. DOI: https://doi.org/10.3390/ijms232012495

Publicado

2024-01-30

Cómo citar

Carrillo-Flores, E., Aguilera-Méndez, A., Mellado-Rojas, M. E., & Beltrán-Peña, E. (2024). Participación del transporte simplástico de las auxinas durante el desarrollo de las plantas. CienciaUAT, 18(2), 06–18. https://doi.org/10.29059/cienciauat.v18i2.1833

Número

Sección

Biología y Química

Artículos similares

1 2 3 4 5 6 7 8 9 10 > >> 

También puede Iniciar una búsqueda de similitud avanzada para este artículo.