Comparative study of learning analytics techniques to predict student academic performance in higher education

Authors

  • Elizabeth Acosta-Gonzaga Instituto Politécnico Nacional, Unidad Profesional Interdisciplinaria de Ingeniería Ciencias Sociales y Administrativas, SEPI. Av. Té, núm. 950 esquina, Resina, col. Granjas México, Alcaldía Iztacalco, Ciudad de México, México, C. P. 08400. http://orcid.org/0000-0001-5413-1063
  • Aldo Ramirez-Arellano Instituto Politécnico Nacional, Unidad Profesional Interdisciplinaria de Ingeniería Ciencias Sociales y Administrativas, SEPI. Av. Té, núm. 950 esquina, Resina, col. Granjas México, Alcaldía Iztacalco, Ciudad de México, México, C. P. 08400. http://orcid.org/0000-0002-6782-9847

DOI:

https://doi.org/10.29059/cienciauat.v15i1.1392

Keywords:

student engagement, student motivation, academic achievements, learning analytics

Abstract

The issue of school dropout involves factors such as students’ engagement that can predict his or her success in school. It has been shown that student engagement has three components: behavioral, emotional and cognitive. Motivation and engagement are strongly related since the former is a precursor of engagement. The aim of this study was to compare the efficiency of linear regression against two data mining techniques to predict the students’ academic performance in higher education. A descriptive cross-sectional study was carried out with 222 students from a public higher education institution in Mexico city. An analysis of hierarchical linear regression (LR) and learning analytics techniques such as neural networks (NN) and support vector machine (SVM) was conducted. To assess the accuracy of the learning analytics techniques, an analysis of variance (ANOVA) was carried out. The techniques were compared using cross validation. The results showed that behavioral engagement and self-efficacy had positive effects on student achievements, while passivity showed a negative effect. Likewise, the LR and SVM techniques had the same performance on predicting students’ achievements. The LR has the advantage of producing a simple and easy model. On the contrary, the SVM technique generates a more complex model. Although, if the model were aimed to forecast the performance, the SVM technique would be the most appropriate, since it does not require to verify any statistical assumption.

Author Biographies

Elizabeth Acosta-Gonzaga, Instituto Politécnico Nacional, Unidad Profesional Interdisciplinaria de Ingeniería Ciencias Sociales y Administrativas, SEPI. Av. Té, núm. 950 esquina, Resina, col. Granjas México, Alcaldía Iztacalco, Ciudad de México, México, C. P. 08400.

Docente del Instituto Politécnico Nacional-UPIICSA, México. Sus áreas de interes se centran en la tecnología educativa y la administración de los sistemas de información 

Aldo Ramirez-Arellano, Instituto Politécnico Nacional, Unidad Profesional Interdisciplinaria de Ingeniería Ciencias Sociales y Administrativas, SEPI. Av. Té, núm. 950 esquina, Resina, col. Granjas México, Alcaldía Iztacalco, Ciudad de México, México, C. P. 08400.

Docente del Instituto Politécnico Nacional-UPIICSA, México. Sus áreas de interes se centran en la tecnología educativa, minería de datos educativa y redes complejas

References

Appleton, J. J., Christenson, S. L., and Furlong, M. J. (2008). Student engagement with school: Critical conceptual and methodological issues of the construct. Psychology in the Schools. 45(5): 369-386.

Appleton, J. J., Christenson, S. L., Kim, D., and Reschly, A. L. (2006). Measuring cognitive and psychological engagement: Validation of the Student Engagement Instrument. Journal of School Psychology. 44(5): 427-445.

Arnold, K. E. (2010). Signals: Applying Academic Analytics. EDUCAUSE Quarterly. 33(1): 1.

Caruth, G. D. (2018). Student Engagement, Retention, and Motivation: Assessing academic success in today’s college students (Vol. 5). Online Submission. 5(1): 17-30.

Chatzistamatiou, M., Dermitzaki, I., Efklides, A., and Leondari, A. (2015). Motivational and affective determinants of self-regulatory strategy use in elementary school mathematics. Educational Psychology. 35(7): 835-850.

Fernández, A. G., Paoloni, P. V., Rinaudo, M. C., and Donolo, D. (2013). Situational interest in Spanish language class on secondary education: Structural relations with engagement, disaffection, and performance. Universitas Psychologica. 12(3): 753-765.

Fredricks, J. A., Blumenfeld, P. C., and Paris, A. H. (2004). School engagement: Potential of the concept, state of the evidence. Review of Educational Research. 74(1): 59-109.

Gasevic, D., Dawson, S., and Siemens, G. (2015). Let’s not forget: Learning analytics are about learning. TechTrends. 59(1): 64-71.

González, A., Rodríguez, Y., Faílde, J. M., and Carrera, M. V. (2016). Anxiety in the statistics class: Structural relations with self-concept, intrinsic value, and engagement in two samples of undergraduates. Learning and Individual Differences. 45: 214-221.

Halibas, A. S., Pillai, I. G., and Matthew, A. C. (2018). Utilization of RFID analytics in assessing student engagement. [En línea]. Disponible en: https://doi.org/10.1109/IT-DREPS.2017.8277809. Fecha de consulta: 8 de mayo de 2019.

Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., and Witten, I. (2009). The WEKA data mining software: An update. SIGKDD Explor. Newsl. 11(1): 10-18.

King, R. B. and McInerney, D. M. (2016). Do goals lead to outcomes or can it be the other way around? Causal ordering of mastery goals, metacognitive strategies, and achievement. British Journal of Educational Psychology. 86(2): 296-312.

Li, Y. and Lerner, R. M. (2011). Trajectories of school engagement during adolescence: Implications for grades, depression, delinquency, and substance use. Developmental Psychology. 47(1): 233-247.

Liu, M., Calvo, R. A., and Pardo, A. (2013). Tracer: A tool to measure and visualize student engagement in writing activities. IEEE 13th International Conference on Advanced Learning Technologies. 421-425.

Martin, A. J. (2012). Part II Commentary: Motivation and engagement: Conceptual, operational, and empirical clarity. In S. L. Christenson, A. L. Reschly, and C. Wylie (Eds.), Handbook of Research on Student Engagement (pp. 303-311). Boston, MA: Springer.

Mayer, J. D., Chabot, H. F., and Carlsmith, K. M. (1997). Conation, affect, and cognition in personality. In G. Matthews (Ed.), Advances in Psychology (pp. 31-63). North-Holland, The Netherlands: Elsevier.

Meyers, L. S., Gamst, G., and Guarino A. J. (2006). Applied multivariate research: Design and interpretation. Thousand Oaks, CA: SAGE Publications. 1016 Pp.

Moubayed, A., Injadat, M., Shami, A., and Lutfiyya, H. (2018). Relationship between student engagement and performance in e-learning environment using association rules, In 2018 IEEE World Engineering Education Conference (EDUNINE). [En línea]. Disponible en: https://doi.org/10.1109/EDUNINE.2018.8451005. Fecha de consulta: 29 de junio de 2019.

Newmann, F. M., Wehlage, G. G., and Lamborn, S. (1992). The Significance and sources of student engagement (In Student engagement and achievement in American secondary schools, ed. F.M. Newmann,). New York: Teachers College Press. 11-39 Pp.

Olivier, E., Archambault, I., and Dupéré, V. (2018). Boys’ and girls’ latent profiles of behavior and social adjustment in school: Longitudinal links with later student behavioral engagement and academic achievement? Journal of School Psychology. 69: 28-44.

Pintrich, P. R. (1991). A manual for the use of the motivated strategies for learning questionnaire (MSLQ). [En línea]. Disponible en: https://eric.ed.gov/?id=ED338122. Fecha de consulta: 7 de febrero de 2018.

Pintrich, P. R. and de-Groot, E. V. (1990). Motivational and self-regulated learning components of classroom academic performance. Journal of Educational Psychology. 82(1): 33-40.

Ramirez-Arellano, A., Acosta-Gonzaga, E., Bory-Reyes, J., and Hernández-Simón, L. M. (2018). Factors affecting student learning performance: A causal model in higher blended education. Journal of Computer Assisted Learning. 34(6): 807-815.

Ramirez-Arellano, A., Bory-Reyes, J., and Hernández-Simón, L. M. (2019). Emotions, motivation, cognitive–metacognitive strategies, and behavior as predictors of learning performance in blended learning. Journal of Educational Computing Research. 57(2): 491-512.

Reschly, A. L. and Christenson, S. L. (2012). Jingle, jangle, and conceptual haziness: Evolution and future directions of the engagement construct. In S. L. Chris-tenson, A. L. Reschly, and C. Wylie (Eds.), Handbook of Research on Student Engagement (pp. 3-19). Boston, MA: Springer.

Reyes, N. S., Morales, J., Moya, J. G., Teran, C. E., Rodriguez, D. N. y Altamirano, G. C. (2019). Modelo para predecir el rendimiento académico basado en redes neuronales y analítica de aprendizaje. Revista Ibérica de Sistemas e Tecnologias de Informação. (E17): 258-266.

Salmela-Aro, K. and Upadyaya, K. (2014). School burnout and engagement in the context of demands–resources model. British Journal of Educational Psychology. 84(1): 137-151.

Siemens, G. and Gasevic, D. (2012). Guest editorial-learning and knowledge analytics. Journal of Educational Technology y Society: 15(3): 1-2.

Skinner, E. A. and Belmont, M. J. (1993). Motivation in the classroom: Reciprocal effects of teacher behavior and student engagement across the school year. Journal of Educational Psychology. 85(4): 571-581.

Skinner, E., Furrer, C., Marchand, G., and Kindermann, T. (2008). Engagement and disaffection in the classroom: Part of a larger motivational dynamic? Journal of Educational Psychology. 100(4): 765-781.

Skinner, E. A. and Pitzer, J. R. (2012). Developmental dynamics of student engagement, coping, and every-day resilience. In S. L. Christenson, A. L. Reschly, and C. Wylie (Eds.), Handbook of Research on Student Engagement (pp. 21-44). Boston, MA: Springer.

Sun, Z., Xie, K., and Anderman, L. H. (2018). The role of self-regulated learning in students’ success in flipped undergraduate math courses. The Internet and Higher Education. 36: 41-53.

Symonds, J., Schoon, I., and Salmela-Aro, K. (2016). Developmental trajectories of emotional disengagement from schoolwork and their longitudinal associations in England. British Educational Research Journal. 42(6): 993-1022.

Taber, K. S. (2018). The Use of Cronbach’s Alpha When Developing and Reporting Research Instruments in Science Education. Research in Science Education. 48(6): 1273-1296.

Tanuar, E., Heryadi, Y., Lukas, Abbas, B., S., and Gaol, F. L. (2018). Using machine learning techniques to earlier predict student’s performance. 2018 Indonesian Association for Pattern Recognition International Conference (INAPR). 85-89.

Urbina-Nájera, A. B. y Mora, J. de la C. (2017). Breve revisión de aplicaciones educativas utilizando Minería de Datos y Aprendizaje Automático. Revista Electrónica de Investigación Educativa. 19(4): 84-96.

Vytasek, J. M., Patzak, A., and Winne, P. H. (2020). Analytics for student engagement. In M. Virvou, E. Alepis, G. A. Tsihrintzis, and L. C. Jain (Eds.), Machine Learning Paradigms: Advances in Learning Analytics (pp. 23-48). Switzerland: Springer Nature.

Wang, F. H. (2017). An exploration of online behaviour engagement and achievement in flipped classroom supported by learning management system. Computers y Education. 114: 79-91.

Wang, M. T. and Eccles, J. S. (2013). School context, achievement motivation, and academic engagement: A longitudinal study of school engagement using a multidimensional perspective. Learning and Instruction. 28: 12-23.

Wong, A. and Chong, S. (2018). Modelling adult learners’ online engagement behaviour: Proxy measures and its application. Journal of Computers in Education. 5(4): 463-479.

Yadav, S. K., Bharadwaj, B., and Pal, S. (2012). Data mining applications: A comparative study for predicting student’s performance, in ArXiv: 1202.4815 [Cs]. [En línea]. Disponible en: http://arxiv.org/abs/1202.4815. Fecha de consulta: 7 de abril de 2019.

Published

2020-08-01

How to Cite

Acosta-Gonzaga, E., & Ramirez-Arellano, A. (2020). Comparative study of learning analytics techniques to predict student academic performance in higher education. CienciaUAT, 15(1), 63-74. https://doi.org/10.29059/cienciauat.v15i1.1392

Issue

Section

Humanities and Behavioral Sciences