Development of a scale of intention to use mobile commerce and its validation through confirmatory composite analysis
DOI:
https://doi.org/10.29059/cienciauat.v18i2.1788Keywords:
mobile commerce, confirmatory composite analysis, intention to use, perceived risk, traditionAbstract
Behavioral intention has been studied from the theory of reasoned action to predict the behavior of individuals. The objective of this research was to develop and validate a scale to measure the intention to use m-commerce, based on the variables of unified theory of acceptance and use of technology as drivers, and the variables of perceived risk and tradition as inhibitors. The instrument was applied on-line to 211 consumers in the state of Baja California, Mexico. Confirmatory composite analysis was used to verify the reliability of the instrument, as well as convergent, discriminant, nomological and predictive validity. A valid and reliable instrument was obtained to measure the influence of the following variables: performance expectancy, social influence, hedonic motivation, perceived risk, facilitating conditions and tradition on the intention to use m-commerce. The developed scale meets the criteria required for a reflective measurement model.
References
Ajzen, I. and Fishbein, M. (1975). A Bayesian analysis of attribution processes. Psychological Bulletin. 82(2): 261-277. DOI: https://doi.org/10.1037/h0076477
Al-Adwan, A. S., Alrousan, M., Al-Soud, A., and Al-Yaseen, H. (2019). Revealing the black box of shifting from electronic commerce to mobile commerce: The case of Jordan. Journal of Theoretical & Applied Electronic Commerce Research. 14(1): 51-67. DOI: https://doi.org/10.4067/S0718-18762019000100105
Ali, F., Rasoolimanesh, S. M., Sarstedt, M., Ringle, C. M., and Ryu, K. (2018). An assessment of the use of partial least squares structural equation modeling (PLS-SEM) in hospitality research. International Journal of Contemporary Hospitality Management. 30(1): 514-538. DOI: https://doi.org/10.1108/IJCHM-10-2016-0568
Arif, I., Aslam, W., and Hwang, Y. (2020). Barriers in adoption of internet banking: A structural equation modeling - Neural network approach. Technology in Society. 61: 101231. DOI: https://doi.org/10.1016/j.techsoc.2020.101231
Bagozzi, R. P. and Yi, Y. (1988). On the evaluation of structural equation models. Journal of the Academy of Marketing Science. 16(1): 74-94. DOI: https://doi.org/10.1177/009207038801600107
Bahaddad, A. A. (2021). The traditional influence on increasing acceptance of commercial smartphone applications in specific regions of the arabic world. Complexity. 1-16. DOI: https://doi.org/10.1155/2021/4336772
Barroso, C., Carrión, G. C., and Roldán, J. L. (2010). Applying Maximum Likelihood and PLS on Diffe-rent Sample Sizes: Studies on SERVQUAL Model and Employee Behavior Model. In V. Esposito Vinzi, W. W. Chin, J. Henseler and H. Wang (Eds.), Hand-book of Partial Least Squares: Concepts, Methods and Applications (pp. 427-447). Berlin, Heidelberg: Springer Berlin Heidelberg. DOI: https://doi.org/10.1007/978-3-540-32827-8_20
Blaise, R., Halloran, M., and Muchnick, M. (2018). Mobile commerce competitive advantage: A Quantitative Study of Variables that Predict M-Commerce Purchase Intentions. Journal of Internet Commerce. 17(2): 96-114. DOI: https://doi.org/10.1080/15332861.2018.1433911
Chimborazo, L. E., Frasquet, M., and Mollá, A. (2021). Explaining Mobile Commerce Usage Intention Based on Technology Acceptance Models in a Developing Market Context. Market / Trziste. 33(1): 25-40. DOI: https://doi.org/10.22598/mt/2021.33.1.25
Chin, W.W. (2010). How to Write Up and Report PLS Analyses. In V. Esposito, Vinzi, W. W. Chin, J. Henseler, and H. Wang, (Eds.), Handbook of Partial Least Squares: Concepts, Methods and Applications. (pp. 655-690). Springer, Heidelberg, Dordrecht, London, New York. DOI: https://doi.org/10.1007/978-3-540-32827-8_29
Cruz, I. y Miranda, A. M. (2023). Factores determinantes de la adopción del m-commerce en consumidores de Tijuana. Estudios Gerenciales. 39(167). 192-206. DOI: https://doi.org/10.18046/j.estger.2023.167.5653
DeVellis, R. F. (2016). Scale Development: Theory and Applications. (Cuarta edición). Los Ángeles, U.S.A: Ed. SAGE. 280 Pp.
Do-Nascimento, J. and Da-Silva-Macedo, M. (2016). Modelagem de equações estruturais com mínimos quadrados parciais: um exemplo da aplicação do SmartPLS® em pesquisas em contabilidade. Revista de Educação e Pesquisa em Contabilidade. 10(3): 289-313. DOI: https://doi.org/10.17524/repec.v10i3.1376
Escobar-Pérez, J. y Cuervo-Martínez, Á. (2008). Validez de contenido y juicio de expertos: una aproximación a su utilización. Avances en Medición. 6(1): 27-36.
Faqih, K. M. S. (2016). An empirical analysis of factors predicting the behavioral intention to adopt Internet shopping technology among non-shoppers in a developing country context: Does gender matter? Journal of Retailing and Consumer Services. 30: 140-164. DOI: https://doi.org/10.1016/j.jretconser.2016.01.016
Gao, K. and Shao, X. (2019). Adoption research of the m-commerce application based on the perspective of supply chain management in shipping industry. Journal of Coastal Research. 83(10083): 839-845. DOI: https://doi.org/10.2112/SI83-138.1
Grcić, A. and Mekić, E. (2019). Predictors of m-continuance intention: Case of users in Bosnia and Herzegovina. Economic Review: Journal of Eco-nomics & Business/Ekonomska Revija: Casopis Za Ekonomiju i Biznis. 17(2): 27-40.
Hair, J. F., Howard, M. C., and Nitzl, C. (2020). Assessing measurement model quality in PLS-SEM using confirmatory composite analysis. Journal of Business Research. 109: 101-110. DOI: https://doi.org/10.1016/j.jbusres.2019.11.069
Hair, J. F., Hult, G. T. M., Ringle, C. M., Sarstedt, M., Castillo-Apraiz, J., Cepeda-Carrión, G., and Roldán, J. L. (2019). Manual de Partial Least Squares Structural Equation Modeling (pls-sem) (Second edition). Terrassa, España: OmniaScience. DOI: https://doi.org/10.3926/oss.37
Hair, J. F., Hult, G. T. M., Ringle, C. ..., and Sarstedt, M. (2017). A primer on partial least squares structural equation modeling (PLS-SEM) (Second edition). Los Ángeles, U.S.A: Sage publications. 384 Pp.
Hambleton, R. K. and Zenisky, A. L. (2011). Translating and adapting tests for cross-cultural assessments, in Cross-cultural research methods in psychology. [En línea]. Disponible en: https://psycnet.apa.org/record/2010-22491-003. Fecha de consulta: 6 de abril de 2022.
Henseler, J., Ringle, C. M., and Sarstedt, M. (2016). Testing measurement invariance of composites using partial least squares. International Marketing Review. 33(3): 405-431. DOI: https://doi.org/10.1108/IMR-09-2014-0304
Henseler, J., Ringle, C. M., and Sinkovics, R. R. (2009). “The use of partial least squares path modeling in international marketing”. In R. R. Sinkovics and P. N. Ghauri (Eds.), New Challenges to International Marketing (pp. 277-319). Emerald Group Publishing Limited, Bingley. DOI: https://doi.org/10.1108/S1474-7979(2009)0000020014
Hew, J. J., Lee, V. H., Ooi, K. B., and Wei, J. (2015). What catalyses mobile apps usage intention: An empirical analysis, in Industrial Management & Da-ta Systems. [En línea]. Disponible en: https://doi.org/10.1108/IMDS-01-2015-0028. Fecha de consulta: 18 de mayo de 2022. DOI: https://doi.org/10.1108/IMDS-01-2015-0028
Iuga, I. C. and Wainberg, D. (2023). Factors That Influence the Implementation of M-Commerce by Romanian SMEs During the COVID-19 Pandemic. Journal of the Knowledge Economy. 1-34. DOI: https://doi.org/10.1007/s13132-023-01215-x
Imbachí, J. F. (2016). m-commerce: El comercio electrónico móvil y los pagos a través de dispositivos móviles. Revista Contexto. 46: 117-140. DOI: https://doi.org/10.18601/01236458.n46.08
Kalinic, Z. and Marinkovic, V. (2016). Determinants of users’ intention to adopt m-commerce: An empirical analysis. Information Systems and e-Busi-ness Management. 14(2): 367-387. DOI: https://doi.org/10.1007/s10257-015-0287-2
Kaur, P., Dhir, A., Singh, N., Sahu, G., and Almotairi, M. (2020). An innovation resistance theory pers-pective on mobile payment solutions. Journal of Re-tailing and Consumer Services. 55: 102059. DOI: https://doi.org/10.1016/j.jretconser.2020.102059
Kim, C., Li, W., and Kim, D. J. (2015). An empirical analysis of factors influencing m-shopping use. In-ternational Journal of Human-Computer Interaction. 31(12): 974-994. DOI: https://doi.org/10.1080/10447318.2015.1085717
Kwofie, M. and Adjei, J. K. (2019). Understanding the factors influencing mobile commerce adoption by traders in developing countries: Evidence from Ghana. En Y. Dwivedi, E. Ayaburi, R. Boateng, and J. Effah (Eds.), ICT Unbounded, Social Impact of Bright ICT Adoption (pp. 104-127). USA: Springer International Publishing. DOI: https://doi.org/10.1007/978-3-030-20671-0_8
Ledesma, R. D., Ferrando, P. J. y Tosi, J. D. (2019). Uso del análisis factorial exploratorio en RIDEP. Recomendaciones para Autores y Revisores. Revista Iberoamericana de Diagnóstico y Evaluación Psicológica. 52(52): 173-180. DOI: https://doi.org/10.21865/RIDEP52.3.13
Lee, W. O. and Wong, L. S. (2016). Determinants of mobile commerce customer loyalty in Malaysia. Procedia - Social and Behavioral Sciences. 224: 60-67. DOI: https://doi.org/10.1016/j.sbspro.2016.05.400
Lira, M. T. y Caballero, E. (2020). Adaptación transcultural de instrumentos de evaluación en salud: historia y reflexiones del por qué, cómo y cuándo. Revista Médica Clínica Las Condes. 31(1): 85-94. DOI: https://doi.org/10.1016/j.rmclc.2019.08.003
Lissitsa, S. and Kol, O. (2019). Four generational cohorts and hedonic m-shopping: Association between personality traits and purchase intention. Electronic Commerce Research. 21(2): 545-570. DOI: https://doi.org/10.1007/s10660-019-09381-4
Lloret-Segura, S., Ferreres-Traver, A., Hernández-Baeza, A. y Tomás-Marco, I. (2014). El análisis factorial exploratorio de los ítems: una guía práctica, revisada y actualizada. Anales de Psicología. 30(3): 1151-1169. DOI: https://doi.org/10.6018/analesps.30.3.199361
Máynez-Guaderrama, A. I. (2021). Apoyo del supervisor: su influencia en la autonomía, cohesión y percepción de apoyo organizacional en una dependencia del gobierno. Estudios Gerenciales. 37(160): 448-459. DOI: https://doi.org/10.18046/j.estger.2021.160.4195
Mehedintu, A. and Soava, G. (2022). A Hybrid SEM-Neural Network Modeling of Quality of M-Commerce Services under the Impact of the COVID-19 Pandemic. Electronics. 11(16): 299. DOI: https://doi.org/10.3390/electronics11162499
Moorthy, K., Suet-Ling, C., Weng-Fatt, Y., Mun-Yee, C., Ket-Yin, E. C., Sin-Yee, K., and Kok-Wei, L. (2017). Barriers of mobile commerce adoption intention: Perceptions of generation X in Malaysia. Journal of Theoretical & Applied Electronic Commerce Research. 12(2): 37-53. DOI: https://doi.org/10.4067/S0718-18762017000200004
Natarajan, T., Balasubramanian, S. A., and Kasilingam, D. L. (2017). Understanding the intention to use mobile shopping applications and its influence on price sensitivity. Journal of Retailing and Consumer Services. 37: 8-22. DOI: https://doi.org/10.1016/j.jretconser.2017.02.010
Ntsafack, F. W., Kala, J. R., and Fosso, S. (2020). Mobile commerce adoption in a developing country: Driving factors in the case of Cameroon, in ICT for an Inclusive World. Lecture Notes in Information Systems and Organisation. [En línea]. Disponible en: https://doi.org/10.1007/978-3-030-34269-2_20. Fecha de consulta: 6 de abril de 2022. DOI: https://doi.org/10.1007/978-3-030-34269-2_20
Palos-Sanchez, P. R., Correia, M. B., and Saura, J. R. (2019). An empirical examination of adoption of mobile applications in Spain and Portugal, based in UTAUT. International Journal of Mobile Communications. 17(5): 579-603. DOI: https://doi.org/10.1504/IJMC.2019.102085
Pandey, S. and Chawla, D. (2019). Engaging m-commerce adopters in India: Exploring the two ends of the adoption continuum across four m-commerce categories. Journal of Enterprise Information Management. 32(1): 191-210. DOI: https://doi.org/10.1108/JEIM-06-2018-0109
Purohit, S., Arora, R., and Paul, J. (2022). The bright side of online consumer behavior: Continuance intention for mobile payments. Journal of Consumer Behaviour. 21(3): 523-542. DOI: https://doi.org/10.1002/cb.2017
Ringle, C. M., Wende, S., and Becker, J. M. (2015). SmartPLS 3. SmartPLS GmbH, Boenningstedt. Journal of Service Science and Management. 10(3): 32-49.
Sair, S. A. and Danish, R. Q. (2018). Effect of performance expectancy and effort expectancy on the mobile commerce adoption intention through personal innovativeness among Pakistani consumers. Pakistan Journal of Commerce & Social Sciences. 12(2): 501-520.
Samad, N. S. A., Abdullah, F. A., Yaziz, M. F. A., and Bahari, N. (2021). The factors influencing the usage of mobile commerce among rural entrepreneurs in peninsular Malaysia. International Journal of Interactive Mobile Technologies. 16(20): 131-145. DOI: https://doi.org/10.3991/ijim.v15i20.23751
Sánchez, M. I., López-Torres, V. G., Montes-de-Oca-Rojas, Y. M., and Leyva-Hernández, S. N. (2022). Mobile commerce usage explained by intention to use, price motivation, and COVID-19. Journal of Positive School Psychology. 5690-5709.
Shaw, N. and Sergueeva, K. (2019). The non-monetary benefits of mobile commerce: Extending UTAUT2 with perceived value. International Journal of Information Management. 45: 44-55. DOI: https://doi.org/10.1016/j.ijinfomgt.2018.10.024
Singh, S., Zolkepli, I. A., and Cheah, W. K. (2018). New wave in mobile commerce adoption via mobile applications in Malaysian market: Investigating the relationship between consumer acceptance, trust, and self efficacy. International Journal of Interactive Mobile Technologies. 12(7): 112-128. DOI: https://doi.org/10.3991/ijim.v12i7.8964
Slade, E. L., Dwivedi, Y. K., Piercy, N. C., and Williams, M. D. (2015). Modeling consumers’ adoption intentions of remote mobile payments in the United Kingdom: Extending UTAUT with innovativeness, risk, and trust. Psychology & Marketing. 32(8): 860-873. DOI: https://doi.org/10.1002/mar.20823
Soni, M., Jain, K. and Kumar, B. (2019). Factors affecting the adoption of fashion mobile shopping applications. Journal of Global Fashion Marketing. 10(4): 358-376. DOI: https://doi.org/10.1080/20932685.2019.1649165
Sujatha, R. and Sekkizhar, J. (2019). Determinants of m-commerce adoption in India Using technology acceptance model infused with innovation diffusion theory. Journal of Management Research. 19(3): 193-204.
Tarhini, A., Alalwan, A. A., Shammout, A. B., and Al-Badi, A. (2019). An analysis of the factors affecting mobile commerce adoption in developing countries: Towards an integrated model. Review of International Business and Strategy. 29(3): 157-179. DOI: https://doi.org/10.1108/RIBS-10-2018-0092
Trojanowski, M. and Kułak, J. (2017). The impact of moderators and trust on consumer’s intention to use a mobile phone for purchases. Central European Management Journal. 25(2): 91-116. DOI: https://doi.org/10.7206/jmba.ce.2450-7814.197
Venkatesh, V., Morris, M. G., Davis, G. B., and Davis, F. D. (2003). User acceptance of information technology: Toward a unified view. MIS Quarterly. 27(3): 425-478. DOI: https://doi.org/10.2307/30036540
Venkatesh, V., Thong, J. Y. L., and Xu, X. (2012). Consumer acceptance and use of information technology: Extending the unified theory of acceptance and use of technology. MIS Quarterly. 36(1): 157-178. DOI: https://doi.org/10.2307/41410412
Verkijika, S. F. (2018). Factors influencing the adoption of mobile commerce applications in Cameroon. Telematics and Informatics. 35(6): 16651674. DOI: https://doi.org/10.1016/j.tele.2018.04.012
Yadav, R., Sharma, S. K., and Tarhini, A. (2015). A multi-analytical approach to understand and predict the mobile commerce adoption. Journal of Enterprise Information Management. 29(2): 222-237. DOI: https://doi.org/10.1108/JEIM-04-2015-0034
Published
How to Cite
License
Copyright (c) 2023 Universidad Autónoma de Tamaulipas

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.