Kinetics of the fluoride and arsenic adsorption using alumina nanofibers

Authors

  • Adrían Zamorategui-Molina Universidad de Guanajuato, División de Ingenierías, av. Juárez 77, Centro, Guanajuato, Guanajuato, México, C. P. 36000.
  • Norma Leticia Gutiérrez-Ortega Universidad de Guanajuato, División de Ingenierías, av. Juárez 77, Centro, Guanajuato, Guanajuato, México, C. P. 36000.
  • Julio Del-Ángel-Soto Universidad de Guanajuato, División de Ciencias Naturales y Exactas.

DOI:

https://doi.org/10.29059/cienciauat.v14i1.1140

Keywords:

nanofibers, Langmuir, kinetics, free energy

Abstract

In many countries of the world including Mexico, the presence of toxic elements such as arsenic and fluoride on the maximum levels permitted in drinking water (0.01 mg/L and 1.5 mg/L) is causing health problems such as cancer and skeletal fluorosis, respectively. For this reason, the objective of this work was to determine the kinetics of adsorption process of the fluoride and arsenic in synthetic water using gamma alumina (γ-Al2O3) and to determine whether the process develops spontaneously. Nanofiber γ-Al2O3 with high surface area was synthesized by homogeneous precipitation and spray dry method. This adsorbent nanomaterial was used to remove fluoride and total arsenic from synthetic water. Nanofiber morphology of the mesoporous γ-Al2O3 was analyzed by transmission and scanning electron microscopy. The high surface area (352 m2/g) was determined by nitrogen adsorption-desorption. The adsorption isotherms of the removal process concur by the Langmuir model for both toxic elements. γ-Al2O3 removes up to 96 % of fluoride ions and 92 % of total arsenic at pH5, while a removal of 90 % and 94.2 % at pH7 of fluoride and arsenic, respectively, is achieved. The removal kinetics follows the pseudo-second order model, and the dimensionless equilibrium parameter and Gibbs standard free energy confirm that the process is performed spontaneously. The gamma nano-fibrillar alumina is a good material for the natural and spontaneous removal of arsenic and fluoride present in synthetic water used in this study.

Author Biographies

Adrían Zamorategui-Molina, Universidad de Guanajuato, División de Ingenierías, av. Juárez 77, Centro, Guanajuato, Guanajuato, México, C. P. 36000.

Profesor asociado C de la División de Ingenierías

Norma Leticia Gutiérrez-Ortega, Universidad de Guanajuato, División de Ingenierías, av. Juárez 77, Centro, Guanajuato, Guanajuato, México, C. P. 36000.

Profesor titular A de la división de Ingenierías, Campus Guanajuato; Universiodad de Guanajuato.

Julio Del-Ángel-Soto, Universidad de Guanajuato, División de Ciencias Naturales y Exactas.

Profesor de la División de Ciencias Naturales y Exactas, Campus Guanajuato, Universodad de Guanajuato.

References

Alconada-Magliano, M. M., Damiano, F., Carrillo-Rivera, J. J., and Fagundo-Castillo J. R. (2017). Arsenic and fluoride in water in northwestern Buenos Aires: their association with natural landscape elements. Journal of Geography and Regional Planning. 10(2): 8-27.

Anielak, A. M. and Grzegorczuk-Nowacka, M. (2011). Significance of Zeta Potential in the Adsorption of Fulvic Acid on Aluminum Oxide and Activated Carbon. Polish Journal of Environmental Studies. 20(6): 1381-1386.

Avci, G., Akhlaghi, O., Ustbas, B., Ozbay, C., Menceloglu, Y. Z., and Akbulut, O. (2016). A PCE-based rheology modifier allows machining of solid cast green bodies of alumina. Ceramics International. 42(3): 3757-3761.

Baneshi, J., Haghighi, M., Jodeiri, N., Abdollahifar, M., and Ajamein, H. (2014). Homogeneous precipitation synthesis of CuO–ZrO2–CeO2–Al2O3 nanocatalyst used in hydrogen production via methanol steam reforming for fuel cell applications. Energy Conversion and Management. 87: 928-937.

Carre, S., Gnep, N. S., Revel, R., and Magnoux, P. (2008). Characterization of the acid–base properties of transition aluminas by model reaction. Applied Catalysis A: General. 348(1): 71-78.

Chakraborty, D., Rahman, M. T., Das, B., Murrill, M., Dey, S., Mukherjee, S., and Quamruzzaman, Q. (2010). Status of groundwater arsenic contamination in Bangladesh:

-year study report. Water Research. 44(19): 5789-5802.

Chhatwani, R., Acharya, A., and Alim, I. (2016). Isotherm studies of equilibrium sorption of fluoride onto calcium alginate beads. Asian Journal of Agriculture & Life Sciences. 1(2): 9-14.

Chinnakoti, P., Chunduri, A. L. A., Vankayala, R. K., Patnaik, S., and Kamisetti V. (2017). Enhanced fluoride adsorption by nano crystalline c-alumina: adsorption kinetics, isotherm modeling and thermodynamic studies. Applied Water Science. 7(5): 2413-2423.

Coria, I. D. (2011). Variación de las propiedades superficiales a altas temperaturas en óxidos de metales de transición soportados en alúmina, para su utilización en reacciones catalíticas que involucren adsorción de gases. Invenio. 14(26): 141-154.

Das, B., Devi, R. R., Umlong, I. M., Borah, K., Banerjee, S., and Talukdar, A. Kr. (2013). Arsenic (III) adsorption on iron acetate coated activated alumina: thermodynamic, kinetics and equilibrium approach. Journal of Environmental Health Sciences & Engineering. 11(1): 42.

Franks, G. V. and Ganz, Y. (2007). Charging behavior at the alumina–water interface and implications for ceramic processing. Journal of the American Ceramic Society. 90(11): 3373-3388.

Habuda-Stanić, M., Ergović, M. R., and Flanagan, A. (2014). A review on adsorption of fluoride from aqueous solution. Materials. 7(9): 6317-6366.

Ho, Y. S. (2006). Review of second-order models for adsorption systems. Journal of Hazardous Materials. 136(3): 681-689.

Hu, F., Wu, X., Wang, Y., and Lai, X. (2015). Ultrathin γ-Al2O3 nanofibers with large specific surface area and their enhanced thermal stability by Si-doping. RSC Advances. 5(67): 54053-54058.

Jadhav, S. V., Bringas, E., Yadav, G. D., Rathod, V. K., Ortiz, I., and Marathe, K. V. (2015). Arsenic and fluoride contaminated groundwaters: A review of current technologies for contaminants removal. Journal of Environmental Management. 162: 306-325.

Jain, A. and Agarwal, M. (2017). Kinetic equilibrium and thermodynamic study of arsenic removal from water using alumina supported iron nano particles. Journal of Water Process Engineering. 19: 51-59.

Jiang, J. Q., Ashekuzzaman, S. M., Jiang A., Sharifuzzaman, S. M., and Chowdhury, S. R. (2013). Arsenic contaminated groundwater and its treatment options in Bangladesh. International Journal of Environmental Research and Public Health. 10(1): 18-46.

Jiménez-Becerril, J., Sosa, I. G., and Rivero, I. A. (2011). Synthesis of basic aluminum sulfate assisted by microwave heating. Ceramics International. 37(8): 3627-3630.

Jokanović, V., Jokanović, B., Marković-Todorović, B., and Marković, Z. (2009). Synthesis and characterization of hydrothermallyobtained colloidal pseudoboehmite/boehmite. Journal of Optoelectronics and Advanced Materials. 11(2): 164-168.

Kabir, Md. E., Saha, M. C., and Jeelani, S. (2007). Effect of ultrasound sonication in carbon nanofibers/polyurethane foam composite. Materials Science and Engineering A. 459(1-2): 111-116.

Kamble, S. P., Deshpande, G., Barve, P. P., Rayalu, S., Labhsetwar, N. K., Malyshew, A., and Kulkarni, B. D. (2010). Adsorption of fluoride from aqueous solution by alumina of alkoxide nature: Batch and continuous operation. Desalination. 264(1-2): 15-23.

Kanduti, D., Sterbenk, P., and Artnik, B. (2016). Fluoride: A review of use and effects on health. Materia socio-medica. 28(2): 133-137.

Kim, S. M., Lee, Y. J., Jun, K. W., Park, J. Y., and Potdar, H. S. (2007). Synthesis of thermo-stable high surface area alumina powder from sol–gel derived boehmite. Materials Chemistry and Physics. 104(1): 56-61.

Kumar, M. and Tamilarasan, R. (2017). Kinetics, equilibrium data and modeling studies for the sorption of chromium by Prosopis juliflora bark carbon. Arabian Journal of Chemistry. 10(2): S1567-S1577.

Kundu, S., Chowdhury, I. H., Sinha, P. K., and Naskar, M. K. (2017). Effect of organic acid-modified mesoporous alumina toward fluoride ions removal from water. Journal of Chemical & Engineering Data. 62(7): 2067-2074.

Lamouri, S., Hamidouche, M., Bouaouadja, N., Belhouchet, H., Garnier, V., Fantozzi, G., and Trelkat, J. F. (2016). Control of the γ-alumina to α-alumina phase transformation for an optimized alumina densification. Boletín de la Sociedad Española de cerámica y vidrio. 56(2): 47-54.

Mohan, D. and Pittman, C. U. Jr. (2007). Arsenic removal from water/wastewater using adsorbents - A critical review. Journal of Hazardous Materials. 142(1-2): 1-53.

Nicomel, N. R., Leus, K., Folens, K., Van-Der-Voort, P., and Laing, G. D. (2015). Technologies for arsenic removal from water: current status and future perspectives. International Journal of Environmental Research and Public Health. 13(1): 62.

Nordstroma, D. K., Zhub, X., McCleskeya, R. B., Königsbergerc, L. C., and Königsbergerc, E. (2017). Thermodynamic properties of aqueous arsenic species and scorodite solubility. Procedia Earth and Planetary Science. 17: 594-597.

Parida, K. M., Pradhan, A. C., Das, J., and Sahu, N. (2009). Synthesis and characterization of nano-sized porous gamma-alumina by control precipitation method. Materials Chemistry and Physics. 113(1): 244-248.

Qiu, H., Lv, L., Pan, B. C., Zhang, Q. J., Zhang, W. M., and Zhang, Q. X. (2009). Critical review in adsorption kinetic models. Journal of Zhejiang University-Science A. 10(5): 716-724.

Rajasulochana, P. and Preethy, V. (2016). Comparison on efficiency of various techniques in treatment of waste and sewage water – a comprehensive review. Resource-Efficient Technologies. 2(4): 175-184.

Rathore, V. K. and Mondal, P. (2017). Competitive adsorption of arsenic and fluoride onto economically prepared aluminum oxide/hydroxide nanoparticles: Multicomponent isotherms and spent adsorbent management. Industrial & Engineering Chemistry Research. 56(28): 8081-8094.

Saha, S. and Sarkar, P. (2012). Arsenic remediation from drinking water by synthesized nano-alumina dispersed in chitosan-grafted polyacrylamide. Journal of Hazardous Materials. 227-228: 68-78.

Samarghandi, M. R., Hadi, M., Moayedi, S., and Askari, F. B. (2009). Two-parameter isotherms of methyl orange sorption by pinecone derived activated carbon. Iranian J Environ Health Sci Eng. 6(4): 285-294.

Shokati-Poursani, A., Nilchi, A., Hassani A. H., Shariat, M., and Nouri, J. (2015). A novel method for synthesis of nano-c-Al2O3: study of adsorption behavior of chromium, nickel, cadmium and lead ions. International Journal of Environmental Science and Technology. 12(6): 2003-2014.

Siahpoosh, S. M., Salahi, E., Hessari, F. A., and Mobasherpour, I. (2016). Synthesis of γ-alumina with high-surface-area via sol-gel method and their performance for the removal of nickel from aqueous solution. Bulletin de la Société Royale des Sciences de Liège. 85: 912-934.

Singh, R., Singh, S., Parihar, P., Singh, V. P., and Prasad, S. M. (2015). Arsenic contamination, consequences and remediation techniques: A review. Ecotoxicology and Environmental Safety. 112: 247-270.

Singh, J., Singh, P., and Singh, A. (2016). Fluoride ions vs removal technologies: A study. Arabian Journal of Chemistry. 9(6): 815-824.

Satoshi, S. Contreras, C. Juarez, H. Aguilera, A., and Serrato, J. (2001). Homogeneous precipitation and phase transformation of mullite ceramic precursor. International Journal of Inorganic Materials. 3(7): 625-632.

Smedley, P. L. and Kinniburgh, D. G. (2002). A review of the source, behaviour and distribution of arsenic in natural waters. Applied geochemistry. 17(5): 517-568.

Varga, A., Raucsik, B., and Szakmány, G. (2017). Origin of natural arsenic and antimony contents in the permian to lower tria-ssic siliciclastic rocks of the western mecsek mountains, sw hungary. Carpathian Journal of Earth and Environmental Sciences. 12(1):5-12.

WHO, World Health Organization (2011). Guidelines for drinking water quality. Fourth edition, WHO Press, Geneva. [En línea]. Disponible en: http://whqlibdoc.who.int/

publications/2011/9789241548151_eng.pdf. Fecha de consulta: 15 de mayo de 2017.

Yang, L., Yang, M., Xu, P., Zhao, X., Bai, H., and Li, H. (2017). Characteristics of nitrate removal from aqueous, solution by modified steel slag. Water. 9(10): 757.

Zamorategui, A., Soto, J. A., and Sugita, S. (2012). The effect of drying methods on the textural properties of the pseudoboehmite synthesized by homogeneous precipitation. Advances and Applications in Mechanical Engineering and Technology. 4(4): 1-17.

Zaspalis, V., Pagana, A., and Sklari, S. (2007). Arsenic removal from contaminated water by iron oxide sorbents and porous ceramic membranes. Desalination. 217(1-3): 167-180.

Zhang, N., Yang, X., Yu, X., Jia, Y., Wang, J., Kong, L., ..., and Liu, J. (2014). Al-1,3,5-benzenetricarboxylic metal–organic frameworks: A promising adsorbent for defluoridation of water with pH insensitivity and low aluminum residual. Chemical Engineering Journal. 252: 220-229.

Published

2019-07-29

How to Cite

Zamorategui-Molina, A., Gutiérrez-Ortega, N. L., & Del-Ángel-Soto, J. (2019). Kinetics of the fluoride and arsenic adsorption using alumina nanofibers. CienciaUAT, 14(1), 45-60. https://doi.org/10.29059/cienciauat.v14i1.1140

Issue

Section

Biology and Chemistry