Cinética de la adsorción de fluoruro y arsénico usando nano-fibras de alúmina
DOI:
https://doi.org/10.29059/cienciauat.v14i1.1140Palabras clave:
nano-fibras, Langmuir, cinética, energía libreResumen
En muchos países del mundo, incluido México, la presencia de elementos tóxicos, como el arsénico y flúor por encima de los niveles máximos permitidos en el agua potable (0.01 mg/L y 1.5 mg/L), respectivamente está generando problemas a la salud, como el cáncer y la fluorosis esquelética, respectivamente. El objetivo de este trabajo fue determinar la cinética del proceso de adsorción del fluoruro y arsénico en soluciones sintéticas, utilizando gamma alúmina (γ-Al2O3) para establecer si el proceso se desarrolla espontáneamente. Se sintetizó γ-Al2O3 nano-fibrilar, con alta área superficial (352 m2/g), por precipitación homogénea, y se secó por espray. El nanomaterial adsorbente obtenido se usó para eliminar el fluoruro y el arsénico total de soluciones sintéticas. La morfología de la nano-fibra de γ-Al2O3 mesoporosa se analizó usando microscopía electrónica de transmisión y de barrido. El área superficial se determinó por adsorción-desorción a pH 7 de nitrógeno. Las isotermas de adsorción del proceso de remoción coincidieron con el modelo de Langmuir para ambos elementos. La γ-Al2O3 eliminó hasta 96 % de iones flúor y 92 % de arsénico total a pH 5, mientras que a pH 7 se alcanzó una remoción del 90 % y 94.2 % de fluoruro y arsénico, respectivamente. La cinética de remoción siguió el modelo de seudo-segundo orden, y el parámetro de equilibrio adimensional y la energía libre estándar de Gibbs confirmaron que el proceso se desarrolló espontáneamente. La gamma alúmina nano-fibrilar permitió la remoción natural y espontánea de arsénico y fluoruro presente en las soluciones utilizadas en este estudio.
Citas
Alconada-Magliano, M. M., Damiano, F., Carrillo-Rivera, J. J., and Fagundo-Castillo J. R. (2017). Arsenic and fluoride in water in northwestern Buenos Aires: their association with natural landscape elements. Journal of Geography and Regional Planning. 10(2): 8-27. DOI: https://doi.org/10.5897/JGRP2016.0608
Anielak, A. M. and Grzegorczuk-Nowacka, M. (2011). Significance of Zeta Potential in the Adsorption of Fulvic Acid on Aluminum Oxide and Activated Carbon. Polish Journal of Environmental Studies. 20(6): 1381-1386.
Avci, G., Akhlaghi, O., Ustbas, B., Ozbay, C., Menceloglu, Y. Z., and Akbulut, O. (2016). A PCE-based rheology modifier allows machining of solid cast green bodies of alumina. Ceramics International. 42(3): 3757-3761. DOI: https://doi.org/10.1016/j.ceramint.2015.11.004
Baneshi, J., Haghighi, M., Jodeiri, N., Abdollahifar, M., and Ajamein, H. (2014). Homogeneous precipitation synthesis of CuO–ZrO2–CeO2–Al2O3 nanocatalyst used in hydrogen production via methanol steam reforming for fuel cell applications. Energy Conversion and Management. 87: 928-937. DOI: https://doi.org/10.1016/j.enconman.2014.07.058
Carre, S., Gnep, N. S., Revel, R., and Magnoux, P. (2008). Characterization of the acid–base properties of transition aluminas by model reaction. Applied Catalysis A: General. 348(1): 71-78. DOI: https://doi.org/10.1016/j.apcata.2008.06.024
Chakraborty, D., Rahman, M. T., Das, B., Murrill, M., Dey, S., Mukherjee, S., and Quamruzzaman, Q. (2010). Status of groundwater arsenic contamination in Bangladesh: DOI: https://doi.org/10.1016/j.watres.2010.06.051
-year study report. Water Research. 44(19): 5789-5802.
Chhatwani, R., Acharya, A., and Alim, I. (2016). Isotherm studies of equilibrium sorption of fluoride onto calcium alginate beads. Asian Journal of Agriculture & Life Sciences. 1(2): 9-14.
Chinnakoti, P., Chunduri, A. L. A., Vankayala, R. K., Patnaik, S., and Kamisetti V. (2017). Enhanced fluoride adsorption by nano crystalline c-alumina: adsorption kinetics, isotherm modeling and thermodynamic studies. Applied Water Science. 7(5): 2413-2423. DOI: https://doi.org/10.1007/s13201-016-0437-9
Coria, I. D. (2011). Variación de las propiedades superficiales a altas temperaturas en óxidos de metales de transición soportados en alúmina, para su utilización en reacciones catalíticas que involucren adsorción de gases. Invenio. 14(26): 141-154.
Das, B., Devi, R. R., Umlong, I. M., Borah, K., Banerjee, S., and Talukdar, A. Kr. (2013). Arsenic (III) adsorption on iron acetate coated activated alumina: thermodynamic, kinetics and equilibrium approach. Journal of Environmental Health Sciences & Engineering. 11(1): 42. DOI: https://doi.org/10.1186/2052-336X-11-42
Franks, G. V. and Ganz, Y. (2007). Charging behavior at the alumina–water interface and implications for ceramic processing. Journal of the American Ceramic Society. 90(11): 3373-3388. DOI: https://doi.org/10.1111/j.1551-2916.2007.02013.x
Habuda-Stanić, M., Ergović, M. R., and Flanagan, A. (2014). A review on adsorption of fluoride from aqueous solution. Materials. 7(9): 6317-6366. DOI: https://doi.org/10.3390/ma7096317
Ho, Y. S. (2006). Review of second-order models for adsorption systems. Journal of Hazardous Materials. 136(3): 681-689. DOI: https://doi.org/10.1016/j.jhazmat.2005.12.043
Hu, F., Wu, X., Wang, Y., and Lai, X. (2015). Ultrathin γ-Al2O3 nanofibers with large specific surface area and their enhanced thermal stability by Si-doping. RSC Advances. 5(67): 54053-54058. DOI: https://doi.org/10.1039/C5RA08315J
Jadhav, S. V., Bringas, E., Yadav, G. D., Rathod, V. K., Ortiz, I., and Marathe, K. V. (2015). Arsenic and fluoride contaminated groundwaters: A review of current technologies for contaminants removal. Journal of Environmental Management. 162: 306-325. DOI: https://doi.org/10.1016/j.jenvman.2015.07.020
Jain, A. and Agarwal, M. (2017). Kinetic equilibrium and thermodynamic study of arsenic removal from water using alumina supported iron nano particles. Journal of Water Process Engineering. 19: 51-59. DOI: https://doi.org/10.1016/j.jwpe.2017.07.001
Jiang, J. Q., Ashekuzzaman, S. M., Jiang A., Sharifuzzaman, S. M., and Chowdhury, S. R. (2013). Arsenic contaminated groundwater and its treatment options in Bangladesh. International Journal of Environmental Research and Public Health. 10(1): 18-46. DOI: https://doi.org/10.3390/ijerph10010018
Jiménez-Becerril, J., Sosa, I. G., and Rivero, I. A. (2011). Synthesis of basic aluminum sulfate assisted by microwave heating. Ceramics International. 37(8): 3627-3630. DOI: https://doi.org/10.1016/j.ceramint.2011.06.021
Jokanović, V., Jokanović, B., Marković-Todorović, B., and Marković, Z. (2009). Synthesis and characterization of hydrothermallyobtained colloidal pseudoboehmite/boehmite. Journal of Optoelectronics and Advanced Materials. 11(2): 164-168.
Kabir, Md. E., Saha, M. C., and Jeelani, S. (2007). Effect of ultrasound sonication in carbon nanofibers/polyurethane foam composite. Materials Science and Engineering A. 459(1-2): 111-116. DOI: https://doi.org/10.1016/j.msea.2007.01.031
Kamble, S. P., Deshpande, G., Barve, P. P., Rayalu, S., Labhsetwar, N. K., Malyshew, A., and Kulkarni, B. D. (2010). Adsorption of fluoride from aqueous solution by alumina of alkoxide nature: Batch and continuous operation. Desalination. 264(1-2): 15-23. DOI: https://doi.org/10.1016/j.desal.2010.07.001
Kanduti, D., Sterbenk, P., and Artnik, B. (2016). Fluoride: A review of use and effects on health. Materia socio-medica. 28(2): 133-137. DOI: https://doi.org/10.5455/msm.2016.28.133-137
Kim, S. M., Lee, Y. J., Jun, K. W., Park, J. Y., and Potdar, H. S. (2007). Synthesis of thermo-stable high surface area alumina powder from sol–gel derived boehmite. Materials Chemistry and Physics. 104(1): 56-61. DOI: https://doi.org/10.1016/j.matchemphys.2007.02.044
Kumar, M. and Tamilarasan, R. (2017). Kinetics, equilibrium data and modeling studies for the sorption of chromium by Prosopis juliflora bark carbon. Arabian Journal of Chemistry. 10(2): S1567-S1577. DOI: https://doi.org/10.1016/j.arabjc.2013.05.025
Kundu, S., Chowdhury, I. H., Sinha, P. K., and Naskar, M. K. (2017). Effect of organic acid-modified mesoporous alumina toward fluoride ions removal from water. Journal of Chemical & Engineering Data. 62(7): 2067-2074. DOI: https://doi.org/10.1021/acs.jced.7b00129
Lamouri, S., Hamidouche, M., Bouaouadja, N., Belhouchet, H., Garnier, V., Fantozzi, G., and Trelkat, J. F. (2016). Control of the γ-alumina to α-alumina phase transformation for an optimized alumina densification. Boletín de la Sociedad Española de cerámica y vidrio. 56(2): 47-54. DOI: https://doi.org/10.1016/j.bsecv.2016.10.001
Mohan, D. and Pittman, C. U. Jr. (2007). Arsenic removal from water/wastewater using adsorbents - A critical review. Journal of Hazardous Materials. 142(1-2): 1-53. DOI: https://doi.org/10.1016/j.jhazmat.2007.01.006
Nicomel, N. R., Leus, K., Folens, K., Van-Der-Voort, P., and Laing, G. D. (2015). Technologies for arsenic removal from water: current status and future perspectives. International Journal of Environmental Research and Public Health. 13(1): 62. DOI: https://doi.org/10.3390/ijerph13010062
Nordstroma, D. K., Zhub, X., McCleskeya, R. B., Königsbergerc, L. C., and Königsbergerc, E. (2017). Thermodynamic properties of aqueous arsenic species and scorodite solubility. Procedia Earth and Planetary Science. 17: 594-597. DOI: https://doi.org/10.1016/j.proeps.2016.12.152
Parida, K. M., Pradhan, A. C., Das, J., and Sahu, N. (2009). Synthesis and characterization of nano-sized porous gamma-alumina by control precipitation method. Materials Chemistry and Physics. 113(1): 244-248. DOI: https://doi.org/10.1016/j.matchemphys.2008.07.076
Qiu, H., Lv, L., Pan, B. C., Zhang, Q. J., Zhang, W. M., and Zhang, Q. X. (2009). Critical review in adsorption kinetic models. Journal of Zhejiang University-Science A. 10(5): 716-724. DOI: https://doi.org/10.1631/jzus.A0820524
Rajasulochana, P. and Preethy, V. (2016). Comparison on efficiency of various techniques in treatment of waste and sewage water – a comprehensive review. Resource-Efficient Technologies. 2(4): 175-184. DOI: https://doi.org/10.1016/j.reffit.2016.09.004
Rathore, V. K. and Mondal, P. (2017). Competitive adsorption of arsenic and fluoride onto economically prepared aluminum oxide/hydroxide nanoparticles: Multicomponent isotherms and spent adsorbent management. Industrial & Engineering Chemistry Research. 56(28): 8081-8094. DOI: https://doi.org/10.1021/acs.iecr.7b01139
Saha, S. and Sarkar, P. (2012). Arsenic remediation from drinking water by synthesized nano-alumina dispersed in chitosan-grafted polyacrylamide. Journal of Hazardous Materials. 227-228: 68-78. DOI: https://doi.org/10.1016/j.jhazmat.2012.05.001
Samarghandi, M. R., Hadi, M., Moayedi, S., and Askari, F. B. (2009). Two-parameter isotherms of methyl orange sorption by pinecone derived activated carbon. Iranian J Environ Health Sci Eng. 6(4): 285-294.
Shokati-Poursani, A., Nilchi, A., Hassani A. H., Shariat, M., and Nouri, J. (2015). A novel method for synthesis of nano-c-Al2O3: study of adsorption behavior of chromium, nickel, cadmium and lead ions. International Journal of Environmental Science and Technology. 12(6): 2003-2014. DOI: https://doi.org/10.1007/s13762-014-0740-7
Siahpoosh, S. M., Salahi, E., Hessari, F. A., and Mobasherpour, I. (2016). Synthesis of γ-alumina with high-surface-area via sol-gel method and their performance for the removal of nickel from aqueous solution. Bulletin de la Société Royale des Sciences de Liège. 85: 912-934. DOI: https://doi.org/10.25518/0037-9565.5748
Singh, R., Singh, S., Parihar, P., Singh, V. P., and Prasad, S. M. (2015). Arsenic contamination, consequences and remediation techniques: A review. Ecotoxicology and Environmental Safety. 112: 247-270. DOI: https://doi.org/10.1016/j.ecoenv.2014.10.009
Singh, J., Singh, P., and Singh, A. (2016). Fluoride ions vs removal technologies: A study. Arabian Journal of Chemistry. 9(6): 815-824. DOI: https://doi.org/10.1016/j.arabjc.2014.06.005
Satoshi, S. Contreras, C. Juarez, H. Aguilera, A., and Serrato, J. (2001). Homogeneous precipitation and phase transformation of mullite ceramic precursor. International Journal of Inorganic Materials. 3(7): 625-632. DOI: https://doi.org/10.1016/S1466-6049(01)00166-0
Smedley, P. L. and Kinniburgh, D. G. (2002). A review of the source, behaviour and distribution of arsenic in natural waters. Applied geochemistry. 17(5): 517-568. DOI: https://doi.org/10.1016/S0883-2927(02)00018-5
Varga, A., Raucsik, B., and Szakmány, G. (2017). Origin of natural arsenic and antimony contents in the permian to lower tria-ssic siliciclastic rocks of the western mecsek mountains, sw hungary. Carpathian Journal of Earth and Environmental Sciences. 12(1):5-12.
WHO, World Health Organization (2011). Guidelines for drinking water quality. Fourth edition, WHO Press, Geneva. [En línea]. Disponible en: http://whqlibdoc.who.int/
publications/2011/9789241548151_eng.pdf. Fecha de consulta: 15 de mayo de 2017.
Yang, L., Yang, M., Xu, P., Zhao, X., Bai, H., and Li, H. (2017). Characteristics of nitrate removal from aqueous, solution by modified steel slag. Water. 9(10): 757. DOI: https://doi.org/10.3390/w9100757
Zamorategui, A., Soto, J. A., and Sugita, S. (2012). The effect of drying methods on the textural properties of the pseudoboehmite synthesized by homogeneous precipitation. Advances and Applications in Mechanical Engineering and Technology. 4(4): 1-17.
Zaspalis, V., Pagana, A., and Sklari, S. (2007). Arsenic removal from contaminated water by iron oxide sorbents and porous ceramic membranes. Desalination. 217(1-3): 167-180. DOI: https://doi.org/10.1016/j.desal.2007.02.011
Zhang, N., Yang, X., Yu, X., Jia, Y., Wang, J., Kong, L., ..., and Liu, J. (2014). Al-1,3,5-benzenetricarboxylic metal–organic frameworks: A promising adsorbent for defluoridation of water with pH insensitivity and low aluminum residual. Chemical Engineering Journal. 252: 220-229. DOI: https://doi.org/10.1016/j.cej.2014.04.090