Capacidad antioxidante y mecanismo de acción de pigmentos en organismos marinos
DOI:
https://doi.org/10.29059/cienciauat.v15i2.1501Palabras clave:
actividad biológica, antioxidante, compuestos naturales, organismos marinosResumen
Los organismos marinos poseen maravillosos colores que los hacen muy atractivos. Las características únicas de los compuestos sintetizados por especies de origen marino van más allá de su apariencia. Los pigmentos responsables de esos colores son capaces también de generar diversas actividades biológicas, como la capacidad antioxidante, la cual puede ocurrir a través de diversos mecanismos. Esto ha propiciado un aumento de su investigación, debido a su amplia aplicación en la biotecnología, farmacéutica, cosmética y alimentación de organismos vivos, expandiendo los estudios tanto in vitro como en ensayos in vivo. El objetivo de este trabajo fue compilar y describir diversos estudios recientes, enfocados en demostrar y elucidar los mecanismos de acción de los diferentes compuestos bioquímicos con actividad antioxidante, provenientes de algunos organismos marinos. Para ello, se utilizaron las bases de datos Scopus®, Web of Science™ y Microsoft Academic. Los pigmentos provenientes de organismos marinos representan una alternativa promisoria frente a los antioxidantes y aditivos sintéticos utilizados en la actualidad. El establecimiento y comprensión de los mecanismos de acción de los componentes pigmentados bioactivos, aislados de los organismos marinos, permitirá determinar con mayor precisión su posible aplicación en la industria.
Citas
Aubourg, S., Torres-Arreola, W., Trigo, M., and Ezquerra-Brauer, J. (2016). Partial characterization of jumbo squid skin pigment extract and its antioxidant potential in a marine oil system. European Journal of Lipid Science and Technology. 118(9): 1293-1304. DOI: https://doi.org/10.1002/ejlt.201500356
Başkan, K., Tütem, E., Özer, N., and Apak, R. (2013). Spectrophotometric and chromatographic assessment of contributions of carotenoids and chlorophylls to the total antioxidant capacities of plant foods. Journal of Agricultural and Food Chemistry. 61(47): 11371-11381. DOI: https://doi.org/10.1021/jf403356h
Chan-Higuera, J., Ezquerra-Brauer, J., Lipan, L., Cano-Lamadrid, M., Rizzitano, R., and Carbonell-Barrachina, A. (2019a). Evaluation of Dosidicus gigas skin extract as an antioxidant and preservative in tuna pâté. Foods. 8(12): 693. DOI: https://doi.org/10.3390/foods8120693
Chan-Higuera, J., Santacruz-Ortega, H., Carbonell-Barrachina, A., Burgos-Hernández, A., Robles-Sánchez, R., Cruz-Ramírez, S., and Ezquerra-Brauer, J. (2019b). Xanthommatin is behind the antioxidant activity of the skin of Dosidicus gigas. Molecules. 24(19): 3420. DOI: https://doi.org/10.3390/molecules24193420
Chang, C., Chang, C., and Lai, G. (2013). Reactive oxygen species scavenging activities in a chemiluminescence model and neuroprotection in rat pheochromocytoma cells by astaxanthin, betacarotene, and canthaxanthin. The Kaohsiung Journal of Medical Sciences. 29(8): 412-21. DOI: https://doi.org/10.1016/j.kjms.2012.12.002
Chen, C., Tao, H., Chen, W., Yang, B., Zhou, X., Luo, X., and Liu, Y. (2020). Recent advances in the chemistry and biology of azaphilones. RSC Advances. 10(17): 10197-10220. DOI: https://doi.org/10.1039/D0RA00894J
Chen, W., Chen, R., Liu, Q., He, Y., He, K., Ding, X., …, and Chen, F. (2017). Orange, red, yellow: biosynthesis of azaphilone pigments in Monascus fungi. Chemical Science. 8(7): 4917-4925. DOI: https://doi.org/10.1039/C7SC00475C
Chintong, S., Phatvej, W., Rerk-Am, U., Waiprib, Y., and Klaypadrit, W. (2019). In vitro antioxidant, antityrosinase, and cytotoxic activities of astaxanthin from shrimp waste. Antioxidants. 8(5): 128. DOI: https://doi.org/10.3390/antiox8050128
Dontsov, A., Fedorovich, I., Lindström, M., and Ostrovsky, M. (1999). Comparative study of spectral and antioxidant properties of pigments from the eyes of two Mysis relicta (Crustacea, Mysidacea) populations, with different light damage resistance. Journal of Comparative Physiology B. 169(3): 157-164. DOI: https://doi.org/10.1007/s003600050206
Dontsov, A., Sakina, N. L., Yakovleva, M. A., Bastrakov, A. I., Bastrakova, I. G., Zagorinsky, A. A., ..., and Ostrovsky, M. A. (2020a). Ommochromes from the compound eyes of insects: physicochemical properties and antioxidant activity. Biochemistry (Moscow). 85(6): 668-678. DOI: https://doi.org/10.1134/S0006297920060048
Dontsov, A., Ushakova, N., and Sadykova, V. (2020b). Ommochromes from Hermetia illucens: isolation and study of antioxidant characteristics and antimicrobial activity. Applied Biochemistry and Microbiology. 56(1): 91-95. DOI: https://doi.org/10.1134/S0003683820010044
Dose, J., Matsugo, S., Yokokawa, H., Koshida, Y., Okazaki, S., Seidel, U., …, and Esatbeyoglu, T. (2016). Free radical scavenging and cellular antioxidant properties of astaxanthin. International Journal of Molecular Sciences. 17(1): 103. DOI: https://doi.org/10.3390/ijms17010103
Ezquerra-Brauer, J. and Aubourg, S. (2019). Recent trends for the employment of jumbo squid (Dosidicus gigas) by-products as a source of bioactive compounds with nutritional, functional and preservative applications: a review. International Journal of Food Science and Technology. 54(4): 987-998. DOI: https://doi.org/10.1111/ijfs.14067
Ezquerra-Brauer, J., Miranda, J., Chan-Higuera, J., Barros-Velázquez, J., and Aubourg, S. (2017). New icing media for quality enhancement of chilled hake (Merluccius merluccius) using a jumbo squid (Dosidicus gigas) skin extract. Journal of the Science of Food and Agriculture. 97(10): 3412-3419. DOI: https://doi.org/10.1002/jsfa.8192
Fernandes, A. S., Nogara, G. P., Menezes, C. R., Cichoski, A. J., Mercadante, A. Z., Jacob-Lopes, E., and Zepka, L. Q. (2017). Identification of chlorophyll molecules with peroxyl radical scavenger capacity in microalgae Phormidium autumnale using ultrasound-assisted extraction. Food Research International. 99(3): 1036-1041. DOI: https://doi.org/10.1016/j.foodres.2016.11.011
Gammone, M., Riccioni, G., and D’Orazio, N. (2015). Marine carotenoids against oxidative stress: effects on human health. Marine Drugs. 13(10): 6226-6246. DOI: https://doi.org/10.3390/md13106226
Gao, J., Yang, S., and Qin, J. (2013). Azaphilonoids: chemistry and biology. Chemical Reviews. 113(7): 4755-811. DOI: https://doi.org/10.1021/cr300402y
Hou, Y., Carne, A., McConnell, M., Bekhit, A., Mros, S., Amagase, K., and Bekhit, A. (2020a). In vitro antioxidant and antimicrobial activities, and in vivo anti-inflammatory activity of crude and fractionated PHNQs from sea urchin (Evechinus chloroticus). Food Chemistry. 316: 126339. DOI: https://doi.org/10.1016/j.foodchem.2020.126339
Hou, Y., Carne, A., McConnell, M., Mros, S., Bekhit, A., and Bekhit, A. (2020b). Macroporous resin extraction of PHNQs from Evechinus chloroticus sea urchin and their in vitro antioxidant, anti-bacterial and in silico anti-inflammatory activities. LWT – Food Science and Technology. 131: 109817. DOI: https://doi.org/10.1016/j.lwt.2020.109817
Hsu, C., Chao, P., Hu, S., and Yang, C. (2013). The antioxidant and free radical scavenging activities of chlorophylls and pheophytins. Food and Nutrition Sciences. 4(8): 1-8. DOI: https://doi.org/10.4236/fns.2013.48A001
Jia, Q., Du, Y., Wang, C., Wang Y., Zhu, T., and Zhu, W. (2019). Azaphilones from the marine sponge-derived fungus Penicillium sclerotiorum. Marine Drugs. 17(5): 260. DOI: https://doi.org/10.3390/md17050260
Kawee-ai, A., Kuntiya, A., and Kim, S. M. (2013). Anticholinesterase and antioxidant activities of fucoxanthin purified from the microalga Phaeodactylum tricornutum. Natural Product Communications. 8(10): 1381-1386. DOI: https://doi.org/10.1177/1934578X1300801010
Lebedev, A., Ivanova, M., and Levitsky, D. (2005). Iron chelators and free radical scavengers in naturally occurring polyhydroxylated 1,4-Naphthoquinones. Hemoglobin. 32(1-2): 165-179. DOI: https://doi.org/10.1080/03630260701700017
Li, D., Zhou, D., Zhu, B., and Mao, L. (2013). Extraction, structural characterization and antioxidant activity of polyhydroxylated 1, 4-naphthoquinone pigments from spines of sea urchin Glyptocidaris crenularis and Strongylocentrotus intermedius. European Food Research and Technology. 237(3): 331-339. DOI: https://doi.org/10.1007/s00217-013-1996-8
Li, T., Liu, R., Wang, X., Luo, J., Luo, J., Kong, L., and Yang, M. (2018). Hypoxia-Protective Azaphilone Adducts from Peyronellaea glomerata. Journal of Natural Products. 81(5): 1148-1153. DOI: https://doi.org/10.1021/acs.jnatprod.7b00663
Maoka, T. (2011). Carotenoids in marine animals. Marine Drugs. 9(2):278-293. DOI: https://doi.org/10.3390/md9020278
Miyanga, A. (2017). Structure and function of polyketide biosynthetic enzymes: various strategies for production of structurally diverse polyketides. Bioscience, Biotechnology and Biochemistry. 81(12): 2227-2236. DOI: https://doi.org/10.1080/09168451.2017.1391687
Nagini, S., Palitti, F., and Natajaran, A. (2015). Chemopreventive potential of chlorophyllin: A review of the mechanisms of action and molecular targets. Nutrition and Cancer. 67(2): 203-11. DOI: https://doi.org/10.1080/01635581.2015.990573
Polonik, N., Sabutskii, Y., and Polonik, S. (2018). Free radical scavenging activity of synthetic and naturally occurring polyhydroxy-, aminohydroxynaphthazarins and related compounds. Natural Product Communications. 13(10): 1319-1322. DOI: https://doi.org/10.1177/1934578X1801301021
Ramírez-Ortega, D., Salazar, A., González-Esquivel, D., and Ríos, C. (2017). 3-Hydroxykynurenine and 3-Hydroxyanthranilic acid enhance the toxicity induced by Copper in rat astrocyte culture. Oxidative Medicine and Cellular Longevity. 2017: 2371895. DOI: https://doi.org/10.1155/2017/2371895
Rigane, G., Bouaziz, M., Sayadi, S., and Salem, R. (2013). Effect of storage on refined olive oil composition: stabilization by addition of chlorophyll pigments and squalene. Journal of Oleo Science. 62(12): 981-987. DOI: https://doi.org/10.5650/jos.62.981
Romero, Y. and Martínez, A. (2015). Antiradical capacity of ommochromes. Journal of Molecular Modeling. 21(8): 2773. DOI: https://doi.org/10.1007/s00894-015-2773-3
Santocono, M., Zurria, M., Berrettini, M., Fedelli, D., and Falcioni, G. (2007). Lutein, zeaxanthin and astaxanthin protect against DNA damage in SK-N-SH human neuroblastoma cells induced by reactive nitrogen species. Journal of Photochemistry and Photobiology. B, Biology. 88(1): 1-10. DOI: https://doi.org/10.1016/j.jphotobiol.2007.04.007
Sathasivam, R. and Ki, J. S. (2018). A review of the biological activities of microalgal carotenoids and their potential use in healthcare and cosmetic industries. Marine Drugs. 16(1): 26. DOI: https://doi.org/10.3390/md16010026
Shamim, G., Ranjan, S., Pandey, D., and Ramani, R. (2014). Biochemistry and biosynthesis of insect pigments. European Journal of Entomology. 111(2): 149-164. DOI: https://doi.org/10.14411/eje.2014.021
Shih, C., Chang, J., Yang, S., Chou, T., and Cheng, H. (2008). Beta-Carotene and canthaxanthin alter the pro-oxidation and antioxidation balance in rats fed a high-cholesterol and high-fat diet. The British Journal of Nutrition. 99(1): 59-66. DOI: https://doi.org/10.1017/S0007114507781497
Soleimani, S., Yousefzadi, M., Moein, S., and Rezadoost, H. (2016). Identification and antioxidant of polyhydroxylated naphthoquinone pigments from sea urchin pigments of Echinometra mathaei. Medicinal Chemistry Research. 25(7): 1476-1483. DOI: https://doi.org/10.1007/s00044-016-1586-y
Sy, C., Dangles, O., Borel, P., and Caris-Veyrat, C. (2015). Interactions between carotenoids from marine bacteria and other micronutrients: impact on stability and antioxidant activity. Marine Drugs. 13(11): 7020-7039. DOI: https://doi.org/10.3390/md13117020
Valery, G., Berdyshev, D., and Novikov, V. (2015). DFT study of mechanisms of the antioxidant effect of natural polyhydroxy-1, 4-naphthoquinones. Reactions of echinamines A and B, metabolites of sea urchin Scaphechinus mirabilis, with hydroperoxyl radical. Russian Chemical Bulletin. 63(9): 1993-1999. DOI: https://doi.org/10.1007/s11172-014-0690-8
Venugopalan, V., Tripathi, S., Nahar, P., Saradhi, P., Das, R., and Gautam, H. (2013). Characterization of canthaxanthin isomers isolated from a new soil Dietzia sp. and their antioxidant activities. Journal of Microbiology and Biotechnology. 23(2): 237-245. DOI: https://doi.org/10.4014/jmb.1203.03032
Wu, H. C., Cheng, M. J., Wu, M. D., Chen, J. J., Chen, Y. L., Chang, H. S., and Chen, K. P. (2018). Secondary metabolites from the fermented rice of the fungus Monascus purpureus and their bioactivities. Natural Product Research. 33(24): 3541-3550. DOI: https://doi.org/10.1080/14786419.2018.1488698
Yang, J., Tseng, Y., Lee, Y., and Mau, J. (2006). Antioxidant properties of methanolic extracts from monascal rice. LWT – Food Science and Technology. 39(7): 740-747. DOI: https://doi.org/10.1016/j.lwt.2005.06.002
Zak, P., Lindström, M., Demchuk, J., and Donner, K. (2013). The eye of the opossum shrimp Mysis relicta (Crustacea, Mysidae) contains two visual pigments located in different photoreceptor cells. Doklady Biological Sciences. 449(1): 68-72. DOI: https://doi.org/10.1134/S0012496613020026
Zhou, D., Qin, L., Zhu, B., and Wang, X. (2011). Extraction and antioxidant property of polyhydroxylated naphthoquinone pigments from spines of purple sea urchin Strongylocentrotus nudus. Food Chemistry. 129(4): 1591-1597. DOI: https://doi.org/10.1016/j.foodchem.2011.06.014