Antioxidant capacity and mechanism of action of pigments in marine organisms

Authors

  • Josafat Marina Ezquerra-Brauer Universidad de Sonora, Departamento de Investigación y Posgrado en Alimentos, boulevard Luis Encinas y Rosales s/n, col. Centro, Hermosillo, Sonora, México, C. P. 83000. https://orcid.org/0000-0001-6838-4395
  • Jesús Enrique Chan-Higuera Universidad de Sonora, Departamento de Investigación y Posgrado en Alimentos, boulevard Luis Encinas y Rosales s/n, col. Centro, Hermosillo, Sonora, México, C. P. 83000.

DOI:

https://doi.org/10.29059/cienciauat.v15i2.1501

Keywords:

biological activity, antioxidant, natural compounds, marine organisms

Abstract

Marine organisms have wonderful colors that make them very attractive. The unique characteristics of the compounds synthesized by species of marine origin go beyond their appearance. The pigments responsible for these colors are also capable of exerting biological activities, including the antioxidant capacity, which can be performed by different mechanisms. This has led to an increase in research attention due to their potential application in the pharmaceutical, cosmetics and food industries, and has expanded from in vitro studies to in vivo tests. The objective of this review is to compile and describe the studies aimed at establishing and elucidating the mechanisms of action of different biochemical compounds with antioxidant activities from marine species. In order to achieve that objective, the Scopus®, Web of Science™ and Microsoft Academic databases were used. Marine pigments represent a promising alternative to the antioxidants and synthetic additives used today. By establishing and understanding the mechanisms of action of the bioactive pigmented compounds isolated from marine organisms, it is possible to determine with greater precision their possible application in the industry.

References

Aubourg, S., Torres-Arreola, W., Trigo, M., and Ezquerra-Brauer, J. (2016). Partial characterization of jumbo squid skin pigment extract and its antioxidant potential in a marine oil system. European Journal of Lipid Science and Technology. 118(9): 1293-1304. DOI: https://doi.org/10.1002/ejlt.201500356

Başkan, K., Tütem, E., Özer, N., and Apak, R. (2013). Spectrophotometric and chromatographic assessment of contributions of carotenoids and chlorophylls to the total antioxidant capacities of plant foods. Journal of Agricultural and Food Chemistry. 61(47): 11371-11381. DOI: https://doi.org/10.1021/jf403356h

Chan-Higuera, J., Ezquerra-Brauer, J., Lipan, L., Cano-Lamadrid, M., Rizzitano, R., and Carbonell-Barrachina, A. (2019a). Evaluation of Dosidicus gigas skin extract as an antioxidant and preservative in tuna pâté. Foods. 8(12): 693. DOI: https://doi.org/10.3390/foods8120693

Chan-Higuera, J., Santacruz-Ortega, H., Carbonell-Barrachina, A., Burgos-Hernández, A., Robles-Sánchez, R., Cruz-Ramírez, S., and Ezquerra-Brauer, J. (2019b). Xanthommatin is behind the antioxidant activity of the skin of Dosidicus gigas. Molecules. 24(19): 3420. DOI: https://doi.org/10.3390/molecules24193420

Chang, C., Chang, C., and Lai, G. (2013). Reactive oxygen species scavenging activities in a chemiluminescence model and neuroprotection in rat pheochromocytoma cells by astaxanthin, betacarotene, and canthaxanthin. The Kaohsiung Journal of Medical Sciences. 29(8): 412-21. DOI: https://doi.org/10.1016/j.kjms.2012.12.002

Chen, C., Tao, H., Chen, W., Yang, B., Zhou, X., Luo, X., and Liu, Y. (2020). Recent advances in the chemistry and biology of azaphilones. RSC Advances. 10(17): 10197-10220. DOI: https://doi.org/10.1039/D0RA00894J

Chen, W., Chen, R., Liu, Q., He, Y., He, K., Ding, X., …, and Chen, F. (2017). Orange, red, yellow: biosynthesis of azaphilone pigments in Monascus fungi. Chemical Science. 8(7): 4917-4925. DOI: https://doi.org/10.1039/C7SC00475C

Chintong, S., Phatvej, W., Rerk-Am, U., Waiprib, Y., and Klaypadrit, W. (2019). In vitro antioxidant, antityrosinase, and cytotoxic activities of astaxanthin from shrimp waste. Antioxidants. 8(5): 128. DOI: https://doi.org/10.3390/antiox8050128

Dontsov, A., Fedorovich, I., Lindström, M., and Ostrovsky, M. (1999). Comparative study of spectral and antioxidant properties of pigments from the eyes of two Mysis relicta (Crustacea, Mysidacea) populations, with different light damage resistance. Journal of Comparative Physiology B. 169(3): 157-164. DOI: https://doi.org/10.1007/s003600050206

Dontsov, A., Sakina, N. L., Yakovleva, M. A., Bastrakov, A. I., Bastrakova, I. G., Zagorinsky, A. A., ..., and Ostrovsky, M. A. (2020a). Ommochromes from the compound eyes of insects: physicochemical properties and antioxidant activity. Biochemistry (Moscow). 85(6): 668-678. DOI: https://doi.org/10.1134/S0006297920060048

Dontsov, A., Ushakova, N., and Sadykova, V. (2020b). Ommochromes from Hermetia illucens: isolation and study of antioxidant characteristics and antimicrobial activity. Applied Biochemistry and Microbiology. 56(1): 91-95. DOI: https://doi.org/10.1134/S0003683820010044

Dose, J., Matsugo, S., Yokokawa, H., Koshida, Y., Okazaki, S., Seidel, U., …, and Esatbeyoglu, T. (2016). Free radical scavenging and cellular antioxidant properties of astaxanthin. International Journal of Molecular Sciences. 17(1): 103. DOI: https://doi.org/10.3390/ijms17010103

Ezquerra-Brauer, J. and Aubourg, S. (2019). Recent trends for the employment of jumbo squid (Dosidicus gigas) by-products as a source of bioactive compounds with nutritional, functional and preservative applications: a review. International Journal of Food Science and Technology. 54(4): 987-998. DOI: https://doi.org/10.1111/ijfs.14067

Ezquerra-Brauer, J., Miranda, J., Chan-Higuera, J., Barros-Velázquez, J., and Aubourg, S. (2017). New icing media for quality enhancement of chilled hake (Merluccius merluccius) using a jumbo squid (Dosidicus gigas) skin extract. Journal of the Science of Food and Agriculture. 97(10): 3412-3419. DOI: https://doi.org/10.1002/jsfa.8192

Fernandes, A. S., Nogara, G. P., Menezes, C. R., Cichoski, A. J., Mercadante, A. Z., Jacob-Lopes, E., and Zepka, L. Q. (2017). Identification of chlorophyll molecules with peroxyl radical scavenger capacity in microalgae Phormidium autumnale using ultrasound-assisted extraction. Food Research International. 99(3): 1036-1041. DOI: https://doi.org/10.1016/j.foodres.2016.11.011

Gammone, M., Riccioni, G., and D’Orazio, N. (2015). Marine carotenoids against oxidative stress: effects on human health. Marine Drugs. 13(10): 6226-6246. DOI: https://doi.org/10.3390/md13106226

Gao, J., Yang, S., and Qin, J. (2013). Azaphilonoids: chemistry and biology. Chemical Reviews. 113(7): 4755-811. DOI: https://doi.org/10.1021/cr300402y

Hou, Y., Carne, A., McConnell, M., Bekhit, A., Mros, S., Amagase, K., and Bekhit, A. (2020a). In vitro antioxidant and antimicrobial activities, and in vivo anti-inflammatory activity of crude and fractionated PHNQs from sea urchin (Evechinus chloroticus). Food Chemistry. 316: 126339. DOI: https://doi.org/10.1016/j.foodchem.2020.126339

Hou, Y., Carne, A., McConnell, M., Mros, S., Bekhit, A., and Bekhit, A. (2020b). Macroporous resin extraction of PHNQs from Evechinus chloroticus sea urchin and their in vitro antioxidant, anti-bacterial and in silico anti-inflammatory activities. LWT – Food Science and Technology. 131: 109817. DOI: https://doi.org/10.1016/j.lwt.2020.109817

Hsu, C., Chao, P., Hu, S., and Yang, C. (2013). The antioxidant and free radical scavenging activities of chlorophylls and pheophytins. Food and Nutrition Sciences. 4(8): 1-8. DOI: https://doi.org/10.4236/fns.2013.48A001

Jia, Q., Du, Y., Wang, C., Wang Y., Zhu, T., and Zhu, W. (2019). Azaphilones from the marine sponge-derived fungus Penicillium sclerotiorum. Marine Drugs. 17(5): 260. DOI: https://doi.org/10.3390/md17050260

Kawee-ai, A., Kuntiya, A., and Kim, S. M. (2013). Anticholinesterase and antioxidant activities of fucoxanthin purified from the microalga Phaeodactylum tricornutum. Natural Product Communications. 8(10): 1381-1386. DOI: https://doi.org/10.1177/1934578X1300801010

Lebedev, A., Ivanova, M., and Levitsky, D. (2005). Iron chelators and free radical scavengers in naturally occurring polyhydroxylated 1,4-Naphthoquinones. Hemoglobin. 32(1-2): 165-179. DOI: https://doi.org/10.1080/03630260701700017

Li, D., Zhou, D., Zhu, B., and Mao, L. (2013). Extraction, structural characterization and antioxidant activity of polyhydroxylated 1, 4-naphthoquinone pigments from spines of sea urchin Glyptocidaris crenularis and Strongylocentrotus intermedius. European Food Research and Technology. 237(3): 331-339. DOI: https://doi.org/10.1007/s00217-013-1996-8

Li, T., Liu, R., Wang, X., Luo, J., Luo, J., Kong, L., and Yang, M. (2018). Hypoxia-Protective Azaphilone Adducts from Peyronellaea glomerata. Journal of Natural Products. 81(5): 1148-1153. DOI: https://doi.org/10.1021/acs.jnatprod.7b00663

Maoka, T. (2011). Carotenoids in marine animals. Marine Drugs. 9(2):278-293. DOI: https://doi.org/10.3390/md9020278

Miyanga, A. (2017). Structure and function of polyketide biosynthetic enzymes: various strategies for production of structurally diverse polyketides. Bioscience, Biotechnology and Biochemistry. 81(12): 2227-2236. DOI: https://doi.org/10.1080/09168451.2017.1391687

Nagini, S., Palitti, F., and Natajaran, A. (2015). Chemopreventive potential of chlorophyllin: A review of the mechanisms of action and molecular targets. Nutrition and Cancer. 67(2): 203-11. DOI: https://doi.org/10.1080/01635581.2015.990573

Polonik, N., Sabutskii, Y., and Polonik, S. (2018). Free radical scavenging activity of synthetic and naturally occurring polyhydroxy-, aminohydroxynaphthazarins and related compounds. Natural Product Communications. 13(10): 1319-1322. DOI: https://doi.org/10.1177/1934578X1801301021

Ramírez-Ortega, D., Salazar, A., González-Esquivel, D., and Ríos, C. (2017). 3-Hydroxykynurenine and 3-Hydroxyanthranilic acid enhance the toxicity induced by Copper in rat astrocyte culture. Oxidative Medicine and Cellular Longevity. 2017: 2371895. DOI: https://doi.org/10.1155/2017/2371895

Rigane, G., Bouaziz, M., Sayadi, S., and Salem, R. (2013). Effect of storage on refined olive oil composition: stabilization by addition of chlorophyll pigments and squalene. Journal of Oleo Science. 62(12): 981-987. DOI: https://doi.org/10.5650/jos.62.981

Romero, Y. and Martínez, A. (2015). Antiradical capacity of ommochromes. Journal of Molecular Modeling. 21(8): 2773. DOI: https://doi.org/10.1007/s00894-015-2773-3

Santocono, M., Zurria, M., Berrettini, M., Fedelli, D., and Falcioni, G. (2007). Lutein, zeaxanthin and astaxanthin protect against DNA damage in SK-N-SH human neuroblastoma cells induced by reactive nitrogen species. Journal of Photochemistry and Photobiology. B, Biology. 88(1): 1-10. DOI: https://doi.org/10.1016/j.jphotobiol.2007.04.007

Sathasivam, R. and Ki, J. S. (2018). A review of the biological activities of microalgal carotenoids and their potential use in healthcare and cosmetic industries. Marine Drugs. 16(1): 26. DOI: https://doi.org/10.3390/md16010026

Shamim, G., Ranjan, S., Pandey, D., and Ramani, R. (2014). Biochemistry and biosynthesis of insect pigments. European Journal of Entomology. 111(2): 149-164. DOI: https://doi.org/10.14411/eje.2014.021

Shih, C., Chang, J., Yang, S., Chou, T., and Cheng, H. (2008). Beta-Carotene and canthaxanthin alter the pro-oxidation and antioxidation balance in rats fed a high-cholesterol and high-fat diet. The British Journal of Nutrition. 99(1): 59-66. DOI: https://doi.org/10.1017/S0007114507781497

Soleimani, S., Yousefzadi, M., Moein, S., and Rezadoost, H. (2016). Identification and antioxidant of polyhydroxylated naphthoquinone pigments from sea urchin pigments of Echinometra mathaei. Medicinal Chemistry Research. 25(7): 1476-1483. DOI: https://doi.org/10.1007/s00044-016-1586-y

Sy, C., Dangles, O., Borel, P., and Caris-Veyrat, C. (2015). Interactions between carotenoids from marine bacteria and other micronutrients: impact on stability and antioxidant activity. Marine Drugs. 13(11): 7020-7039. DOI: https://doi.org/10.3390/md13117020

Valery, G., Berdyshev, D., and Novikov, V. (2015). DFT study of mechanisms of the antioxidant effect of natural polyhydroxy-1, 4-naphthoquinones. Reactions of echinamines A and B, metabolites of sea urchin Scaphechinus mirabilis, with hydroperoxyl radical. Russian Chemical Bulletin. 63(9): 1993-1999. DOI: https://doi.org/10.1007/s11172-014-0690-8

Venugopalan, V., Tripathi, S., Nahar, P., Saradhi, P., Das, R., and Gautam, H. (2013). Characterization of canthaxanthin isomers isolated from a new soil Dietzia sp. and their antioxidant activities. Journal of Microbiology and Biotechnology. 23(2): 237-245. DOI: https://doi.org/10.4014/jmb.1203.03032

Wu, H. C., Cheng, M. J., Wu, M. D., Chen, J. J., Chen, Y. L., Chang, H. S., and Chen, K. P. (2018). Secondary metabolites from the fermented rice of the fungus Monascus purpureus and their bioactivities. Natural Product Research. 33(24): 3541-3550. DOI: https://doi.org/10.1080/14786419.2018.1488698

Yang, J., Tseng, Y., Lee, Y., and Mau, J. (2006). Antioxidant properties of methanolic extracts from monascal rice. LWT – Food Science and Technology. 39(7): 740-747. DOI: https://doi.org/10.1016/j.lwt.2005.06.002

Zak, P., Lindström, M., Demchuk, J., and Donner, K. (2013). The eye of the opossum shrimp Mysis relicta (Crustacea, Mysidae) contains two visual pigments located in different photoreceptor cells. Doklady Biological Sciences. 449(1): 68-72. DOI: https://doi.org/10.1134/S0012496613020026

Zhou, D., Qin, L., Zhu, B., and Wang, X. (2011). Extraction and antioxidant property of polyhydroxylated naphthoquinone pigments from spines of purple sea urchin Strongylocentrotus nudus. Food Chemistry. 129(4): 1591-1597. DOI: https://doi.org/10.1016/j.foodchem.2011.06.014

Published

2021-01-30

How to Cite

Ezquerra-Brauer, J. M., & Chan-Higuera, J. E. (2021). Antioxidant capacity and mechanism of action of pigments in marine organisms. CienciaUAT, 15(2), 186–197. https://doi.org/10.29059/cienciauat.v15i2.1501

Issue

Section

Biotechnology and Agricultural Sciences

Similar Articles

1 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.