Estudios sobre el costo del impacto por el incremento en el nivel del mar en los puertos y las metodologías empleadas para su cálculo: una revisión sistemática

Autores/as

  • Luis Jesús Rodríguez-Aguilar Universidad Autónoma de Baja California, Instituto de Investigaciones Oceanológicas, carretera Transpeninsular Ensenada-Tijuana, núm. 3917, Fracc. Playitas, Ensenada, Baja California, México, C. P. 22860. https://orcid.org/0009-0009-8242-2760
  • María Cristina Garza-Lagler Centro de Investigación en Alimentación y Desarrollo, A. C. (CIAD), Coordinación de Desarrollo Regional, Hermosillo, Sonora, México, C. P. 83304. https://orcid.org/0000-0001-6408-1506
  • Violeta Zetzangari Fernández-Díaz Universidad Autónoma de Baja California, Facultad de Ciencias Marinas, Ensenada, Baja California, México, C. P. 22860. https://orcid.org/0000-0003-0450-2385

DOI:

https://doi.org/10.29059/cienciauat.v19i2.1888

Palabras clave:

cambio climático, incremento en el nivel del mar, puertos, metodología de costos, PRISMA

Resumen

Los puertos son esenciales para el crecimiento económico de un país por sus actividades comerciales y la creación de empleos, sin embargo, debido a su ubicación geográfica son vulnerables a inundaciones, con un mayor impacto en los últimos años, derivado del derretimiento de las capas de hielo de los glaciares y el aumento de la temperatura en los océanos, que son los principales efectos asociados al cambio climático que han contribuido al incremento en el nivel del mar (INM). El objetivo del presente trabajo fue identificar y caracterizar las metodologías empleadas, a nivel mundial, para calcular los costos por el INM en los puertos con la finalidad de ofrecer una aproximación de las propuestas metodológicas existentes para abordar este importante efecto del cambio climático. Para el desarrollo del trabajo, se dio seguimiento al listado sugerido en el Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA), además se procedió con un análisis de contenido. Los costos que se estimaron en los estudios variaron significativamente desde unos millones hasta miles de millones de dólares, siendo en su mayoría acciones de adaptación, seguidas de los aspectos económicos, rentabilidad y relación costo-beneficio. Es conveniente transitar de estrategias aisladas y particulares a una propuesta metodológica global y estandarizada que permita afrontar el riesgo de inundación que se considere posiblemente inevitable ante los efectos del cambio climático. La operatividad de los puertos frente al INM dependerá en gran medida de una adecuada estimación de inversión necesaria para afrontarla, mediante proyecciones climáticas estandarizadas, evaluando de forma global el costo que implica, para garantizar que la inversión en infraestructuras portuarias sea eficaz.

Citas

Aerts, J. C., Barnard, P. L., Botzen, W., Grifman, P., Hart, J. F., De-Moel, H., Mann, A. N., de-Ruig, L. T., & Sadrpour, N. (2018). Pathways to resilience: adapting to sea level rise in Los Angeles. Annals of the New York Academy of Sciences, 1427, 1-90.https://doi.org/10.1111/nyas.13917 DOI: https://doi.org/10.1111/nyas.13917

Amer, R. (2024). Assessing vulnerability and enhancing resilience of port systems in southeast Texas facing sea-level rise. Frontiers in Built Environment, 10, 1369833. https://www.doi.org/10.3389/fbuil.2024.1369833 DOI: https://doi.org/10.3389/fbuil.2024.1369833

Asariotis, R., Benamara, H., & Mohos, V. (2018). Port Industry Survey on Climate Change Impacts and Adaptation. UNCTAD. Research Paper No. 18. [En línea]. Disponible en: https://doi.org/10.13140/RG.2.2.28176.66569. Fecha de consulta: 21 de agosto de 2023.

Becker, A., Hippe, A., & Mclean, E. L. (2017). Cost and Materials Required to Retrofit US Seaports in Response to Sea Level Rise: A Thought Exercise for Climate Response. Journal of Marine Science and Engineering, 5(3),44. https://doi.org/10.3390/jmse5030044 DOI: https://doi.org/10.3390/jmse5030044

Bosello, F. & De-Cian, E. (2014). Climate change, sea level rise, and coastal disasters. A review of modeling practices. Energy Economics, 46, 593-605. https://doi.org/10.1016/j.eneco.2013.09.002 DOI: https://doi.org/10.1016/j.eneco.2013.09.002

Brown, S., Jenkins, K., Goodwin, P., Lincke, D., Vafeidis, A. T., Tol, R. S. J., Jenkins, R., Warren, R., Nicholls, R. J., Jevrejeva, S., Sanchez, A., & Haigh, I. D. (2021). Global costs of protecting against sea-level rise at 1.5 to 4.0 °C. Climatic Change, 167, 4. https://doi.org/10.1007/s10584-021-03130-z DOI: https://doi.org/10.1007/s10584-021-03130-z

Bruun, P. (1962). Sea-level rise as a cause of shore erosión. Journal of the Waterways and Harbors Division, 88, 117-130. https://doi.org/10.1061/JWHEAU.0000252 DOI: https://doi.org/10.1061/JWHEAU.0000252

DiSegni, D. M., Bitan, M., & Zviely, D. (2017). Assessing the costs for adaptation of marine constructions to sea-level rise. Journal of Environmental Planning and Management, 60(11), 2056-2070. https://doi.org/10.1080/09640568.2016.1272441 DOI: https://doi.org/10.1080/09640568.2016.1272441

El-Raey, M. E., Dewidar, K., & El-Hattab, M. (1999). Adaptation to the Impacts of Sea Level Rise in Egypt. Mitigation and Adaptation Strategies for Global Change, 4, 343-361. https://doi.org/10.1023/A:1009684210570 DOI: https://doi.org/10.1023/A:1009684210570

Ehsan, S., Begum, R. A., Nor, N. G. M., & Maulud, K. N. A. (2019). Current and potential impacts of sea level rise in the coastal areas of Malaysia. IOP Conference Series: Earth and Environmental Science, 228, 012023. https://doi.org/10.1088/1755-1315/228/1/012023 DOI: https://doi.org/10.1088/1755-1315/228/1/012023

Galiatsatou P., Makris C., & Prinos P. (2018). Optimized Reliability Based Upgrading of Rubble Mound Breakwaters in a Changing Climate. Journal of Marine Science and Engineering, 6(3), 92. https://doi.org/10.3390/jmse6030092 DOI: https://doi.org/10.3390/jmse6030092

Gracia, V., Sierra, J. P., Gómez, M., Pedrol, M., Sampé, S., García-León, M., & Gironella, X. (2019). Assessing the impact of sea level rise on port operability using LiDAR-derived digital elevation models. Remote Sensing of Environment, 232, 111318. https://doi.org/10.1016/j.rse.2019.111318 DOI: https://doi.org/10.1016/j.rse.2019.111318

Hallegatte, S., Ranger, N., Mestre, O., Dumas, P., Corfee-Morlot, J., Herweijer, C., & Wood, R. M. (2011). Assessing climate change impacts, sea level rise and storm surge risk in port cities: a case study on Copenhagen. Climatic Change, 104, 113-137. https://doi.org/10.1007/s10584-010-9978-3 DOI: https://doi.org/10.1007/s10584-010-9978-3

Haigh, I. D., Wadey, M. P., Wahl, T., Ozsoy, O., Nicholls, R. J., Brown, J. M., Horsburgh, K., & Gould-by, B. (2016). Spatial and temporal analysis of extreme sea level and storm surge events around the coastline of the UK. Scientific Data, 3, 160107. https://doi.org/10.1038/sdata.2016.107 DOI: https://doi.org/10.1038/sdata.2016.107

Hanson, S. E. & Nicholls, R. J. (2020). Demand for Ports to 2050: Climate Policy, Growing Trade and the Impacts of Sea-Level Rise. Earth’s Future, 8, e2020EF001543. https://doi.org/10.1029/2020EF001543 DOI: https://doi.org/10.1029/2020EF001543

Haasnoot, M., Brown, S., Scussolini, P., Jiménez, J. A., Vafeidis, A. T., & Nicholls, R. J. (2019). Generic adaptation pathways for coastal archetypes under uncertain sea-level rise. Environmental Research Communications, 1, 071006. https://www.doi.org/10.1088/2515-7620/ab1871 DOI: https://doi.org/10.1088/2515-7620/ab1871

Hoshino, S., Esteban, M., Mikami, T., Takagi, H., & Shibayama, T. (2016). Estimation of increase in storm surge damage due to climate change and sea level rise in the Greater Tokyo area. Natural Hazards, 80, 539-565. https://doi.org/10.1007/s11069-015-1983-4 DOI: https://doi.org/10.1007/s11069-015-1983-4

IPCC, Panel Intergubernamental sobre el Cambio Climático (1992). Cambio Climático: Las Evaluaciones del IPCC de 1990 y 1992. [Archivo PDF]. [En línea]. Disponible en: www.ipcc.ch/site/assets/uploads/2018/05/ipcc_90_92_assessments_far_full_report_sp.pdf. Fecha de consulta: 20 de julio de 2023.

IPCC, Panel Intergubernamental sobre el Cambio Climático (2014). Cambio climático 2014: Informe de síntesis. [Archivo PDF]. [En línea]. Disponible en: www.ipcc.ch/site/assets/uploads/2018/02/SYR_AR5_FINAL_full_es.pdf. Fecha de consulta: 8 de noviembre de 2023.

IPCC, Intergovernmental Panel on Climate Change (2022). Summary for Policymakers. En H. O. Pörtner, D. C. Roberts, E. S. Poloczanska, K. Mintenbeck, M. Tignor, A. Alegría, M. Craig, S. Langsdorf, S. Löschke, V. Möller, & A. Okem (Eds.), Climate Change 2022: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (pp. 3-33). Cambridge University Press. https://doi.org/10.1017/9781009325844.001 DOI: https://doi.org/10.1017/9781009325844

IPCC, Intergovernmental Panel on Climate Change (2023). Climate Change 2023: Synthesis Report. [Archivo PDF]. [En línea]. Disponible en: www.ipcc.ch/report/ar6/syr/downloads/report/IPCC_AR6_SYR_SPM.pdf. Fecha de consulta: 17 de julio de 2023.

Izaguirre, C., Losada, I. J., Camus, P., Vigh, J. L., & Stenek, V. (2021). Climate change risk to global port operations. Nature Climate Change, 11, 14-20. https://doi.org/10.1038/s41558-020-00937-z DOI: https://doi.org/10.1038/s41558-020-00937-z

Jebbad, R., Sierra, J. P., Mösso, C., Mestres, M., & Sánchez-Arcilla, A. (2022). Assessment of harbour inoperability and adaptation cost due to sea level rise. Application to the port of Tangier-Med (Morocco). Applied Geography, 138, 102623. https://doi.org/10.1016/j.apgeog.2021.102623 DOI: https://doi.org/10.1016/j.apgeog.2021.102623

Jevrejeva, S., Grinsted, A., & Moore, J. C. (2014). Upper limit for sea level projections by 2100. Environmental Research Letters, 9, 104008. https://doi.org/10.1088/1748-9326/9/10/104008 DOI: https://doi.org/10.1088/1748-9326/9/10/104008

Kirezci, E., Young, I. R., Ranasinghe, R., Muis, S., Nicholls, R. J., Lincke, D., & Hinkel, J. (2020). Projections of global-scale extreme sea levels and resulting episodic coastal flooding over the 21st Century. Scientific Reports, 10, 11629. https://doi.org/10.1038/s41598-020-67736-6 DOI: https://doi.org/10.1038/s41598-020-67736-6

Kontogianni, A., Damigos, D., Kyrtzoglou, T., Tourkolias, C., & Skourtos, M., (2018). Development of a composite climate change vulnerability index for small craft harbours. Environmental Hazards, 18, 173-190. https://doi.org/10.1080/17477891.2018.1512469 DOI: https://doi.org/10.1080/17477891.2018.1512469

Krippendorff, K. (1990). Metodología de análisis de contenido. Teoría y práctica. [Archivo PDF]. [En línea]. Disponible en: https://www.media3turdera.com.ar/mediosyrealidad/Klaus-krippendorff.pdf. Fecha de consulta: 20 de julio de 2023.

McEvoy, S., Haasnoot, M., & Biesbroek, R. (2021). How are European countries planning for sea level rise? Ocean & Coastal Management, 203, 105512. https://www.doi.org/10.1016/j.ocecoaman.2020.105512 DOI: https://doi.org/10.1016/j.ocecoaman.2020.105512

Messner, S., Moran, L., Reub, G., & Campbell, J. (2013). Climate change and sea level rise impacts at Ports and a consistent methodology to evaluate vulnerability and risk. WIT Transactions on Ecology and the Environment, 169, 141-153. https://doi.org/10.2495/CP130131 DOI: https://doi.org/10.2495/CP130131

Mudronja, G., Jugović, A., & Škalamera-Alilović, D. (2020). Seaports and Economic Growth: Panel Data Analysis of EU Port Regions. Journal of Marine Science and Engineering, 8, 1017. https://doi.org/10.3390/jmse8121017 DOI: https://doi.org/10.3390/jmse8121017

Munim, Z. H. & Schramm, H. J. (2018). The impacts of port infrastructure and logistics performance on economic growth: the mediating role of maritime trade. Journal of Shipping and Trade, 3, 1-19. https://doi.org/10.1186/s41072-018-0027-0 DOI: https://doi.org/10.1186/s41072-018-0027-0

Nazarnia, H., Nazarnia, M., Sarmasti, H., & Wills, W. O. (2020). A Systematic Review of Civil and Environmental Infrastructures for Coastal Adaptation to Sea Level Rise. Civil Engineering Journal, 6, 1375-1399. https://doi.org/10.28991/cej-2020-03091555 DOI: https://doi.org/10.28991/cej-2020-03091555

Page, M. J., McKenzie, J. E., Bossuyt, P. M., Boutron, I., Hoffmann, T. C., Mulrow, C. D., Shamseer, L., Tetzlaff, J. M., Akl, E. A., Brennan, S. E., Chou, R., Glanville, J., Grimshaw, J. M., Hróbjartsson, A., Lalu, M. M., Li, T., Loder, E. W., Mayo-Wilson, E., McDonald, S., … y Moher, D. (2021). Declaración PRISMA 2020: una guía actualizada para la publicación de revisiones sistemáticas. Revista Española de Cardiología, 74(9), 790-799. https://doi.org/10.1016/j.recesp.2021.06.016 DOI: https://doi.org/10.1016/j.rec.2021.07.010

Portillo, J. N., Negro-Valdecantos, V., & del-Campo, J. M. (2022). Review of the Impacts of Climate Change on Ports and Harbours and Their Adaptation in Spain. Sustainability, 14, 7507. https://doi.org/10.3390/su14127507 DOI: https://doi.org/10.3390/su14127507

PNUD-INECC, United Nations Development Programme-Instituto Nacional de Ecología y Cambio Climático (2016). Impacto de la elevación del nivel del mar en la superficie y línea de costa de 35 islas pobladas y prioritarias de México. [Archivo PDF]. [En línea]. Disponible en: https://datos.abiertos.inecc.gob.mx/Datos_abiertos_INECC/CGACC/DocumentosRIslasMarias/Eje3_ImpactosDelCambioClimaticoEnTerritorioInsularMexicano/EstudiosAguirreEtAl/IslasMarLineaDeCosta.pdf. Fecha de consulta: 12 de julio de 2023.

Reyes-Bonilla, H., Diaz-Castro, S. C. y González-Baheza, A. (2020). El incremento del nivel del mar: afectación en costas mexicanas. [Archivo PDF]. [En línea]. Disponible en: https://cibnor.repositorioinstitucional.mx/jspui/bitstream/1001/2241/1/CapituloReyes-BonillaDiaz-CastroyGonzlez-Baheza2020.pdf. Fecha de consulta: 12 de julio de 2023.

Ribeiro, A. S., Lopes, C. L., Sousa, M. C., Gómez-Gesteira, M., Vaz, N., & Dias, J. M. (2023). Reporting Climate Change Impacts on Coastal Ports (NW Iberian Peninsula): A Review of Flooding Extent. Journal of Marine Science and Engineering, 11, 477. https://doi.org/10.3390/jmse11030477 DOI: https://doi.org/10.3390/jmse11030477

Saizar, A. (1997). Assessment of impacts of a potential sea-level rise on the coast of Montevideo, Uruguay. Climate Research, 9, 73-79. https://doi.org/10.3354/cr009073 DOI: https://doi.org/10.3354/cr009073

Sierra, J. P. (2019). Economic Impact of Overtopping and Adaptation Measures in Catalan Ports Due to Sea Level Rise. Water, 11(7), 1440. https://doi.org/10.3390/w11071440 DOI: https://doi.org/10.3390/w11071440

Sriver, R. L., Lempert, R. J., Wikman-Svahn, P., & Keller, K. (2018). Characterizing uncertain sea-level rise projections to support investment decisions. PLoS ONE, 13(2), 0190641. https://doi.org/10.1371/journal.pone.0190641 DOI: https://doi.org/10.1371/journal.pone.0190641

Taherkhani, M., Vitousek, S., Barnard, P. L., Frazer, N., Anderson, T. R., & Fletcher, C. H. (2020). Sea-level rise exponentially increases coastal flood frequency. Scientific Reports, 10, 6466. https://doi.org/10.1038/s41598-020-62188-4 DOI: https://doi.org/10.1038/s41598-020-62188-4

Tebaldi, C., Ranasinghe, R., Vousdoukas, M., Rasmussen, D. J., Vega-Westhoff, B., Kirezci, E., Kopp, R. E., Sriver, R., & Mentaschi, L. (2021). Extreme sea levels at different global warming levels”. Nature Climate Change, 11, 746-751. https://doi.org/10.1038/s41558-021-01127-1 DOI: https://doi.org/10.1038/s41558-021-01127-1

UNCTAD, Conferencia de las Naciones Unidas sobre Comercio y Desarrollo (2022). Informe sobre el transporte marítimo. [Archivo PDF]. [En línea]. Disponible en: https://unctad.org/system/files/official-document/rmt2022overview_es.pdf. Fecha de consulta: 27 de julio de 2023.

Verschuur, J., Koks, E. E., & Hall, J. W. (2022). Ports’ criticality in international trade and global supply-chain”. Nature Communications, 13, 4351. https://doi.org/10.1038/s41467-022-32070-0 DOI: https://doi.org/10.1038/s41467-022-32070-0

Verschuur, J., Koks, E. E., Li, S., & Hall, J. W. (2023). Multi-hazard risk to global port infrastructure and resulting trade and logistics losses. Communications Earth & Environment, 4, 5. https://doi.org/10.1038/s43247-022-00656-7 DOI: https://doi.org/10.1038/s43247-022-00656-7

Winckler, P., Esparza, C., Mora, J., Melo, O., Bambach, N., Contreras-López, M., & Sactic, M. I. (2022). Impacts in ports on a tectonically active coast for climate-driven projections under the RCP 8.5 scenario: 7 Chilean ports under scrutiny. Coastal Engineering Journal, 64, 387-405. https://doi.org/10.1080/21664250.2022.2088194 DOI: https://doi.org/10.1080/21664250.2022.2088194

Yang, Z., Ng, A. K. Y., Lee, P. T. W., Wang, T., Qu, Z., Sanchez-Rodrigues, V., Pettit, S., Harris, I., Zhang, D., & Lau, Y. Y. (2018). Risk and cost evaluation of port adaptation measures to climate change impacts. Transportation Research Part D: Transport and Environment, 61, 444-458. https://doi.org/10.1016/j.trd.2017.03.004 DOI: https://doi.org/10.1016/j.trd.2017.03.004

Zviely, D., Bitan, M., & DiSegni, D. M. (2015). The effect of sea-level rise in the 21st century on marine structures along the Mediterranean coast of Israel: An evaluation of physical damage and adaptation cost. Applied Geography, 57, 154-162. https://doi.org/10.1016/j.apgeog.2014.12.007 DOI: https://doi.org/10.1016/j.apgeog.2014.12.007

Publicado

2024-10-02

Cómo citar

Rodríguez-Aguilar, L. J., Garza-Lagler, M. C., & Fernández-Díaz, V. Z. (2024). Estudios sobre el costo del impacto por el incremento en el nivel del mar en los puertos y las metodologías empleadas para su cálculo: una revisión sistemática. CienciaUAT, 19(2), 123–139. https://doi.org/10.29059/cienciauat.v19i2.1888

Número

Sección

Artículo

Categorías

Artículos similares

<< < 2 3 4 5 6 7 8 9 10 11 > >> 

También puede Iniciar una búsqueda de similitud avanzada para este artículo.