Laplace transform-perturbation method to solve nonlinear perturbative multiple solutions problems with mixed and Neumann boundary conditions
DOI:
https://doi.org/10.29059/cienciauat.v13i2.1119Keywords:
Laplace transform, perturbation method, nonlinear differential equationsAbstract
The field of differential equations has recently gained attention due to recent developments in science and technology. For this reason, the analysis for the use of new methodologies to solve them has become important. Based on the combination of Laplace Transform method (LT) and Perturbation Method (PM) this article proposes the Laplace transform-Perturbation Method (LT-PM) which finds its motivation on the application of LT to linear ordinary differential equations. The goal of this work is to propose a modification of PM - the LT-PM), in order to solve nonlinear perturbative problems with boundary conditions defined on finite intervals. The proposed methodology consisted on the application of LT to the differential equation to solve and then, assuming that its solutions can be expressed as a series of perturbative parameter powers. Thus, the solution of the problem is obtained by systematically applying the transformed inverse LT. The main results of this paper were shown through two case studies, where LT-PM is identified as potentially useful for finding multiple solutions to nonlinear problems. Additionally, the LT-PM enhances the applicability of PM, in some cases of mixed and Neumann boundary conditions, where PM is unsuitable to provide the results. With the purpose of verifying the accuracy of the obtained results, the Square Residual Error (SRE) was calculated. The resulting value was extremely low, which showed the precision and potential of LT-PM. We conclude that, although the proposed method resulted efficient for the case studies presented in this article, it is expected that LT-PM can be a potentially useful tool for other case studies. Particularly those related to the practical applications of science and engineering.
References
Abbasbandy, S., Magyari, E., and Shivanian, E. (2009). The homotopy analysis method for multiple solutions of nonlinear boundary value problems. Communications in Nonlinear Science and Numerical Simulation. 14(9-10): 3530-3536. DOI: https://doi.org/10.1016/j.cnsns.2009.02.008
Aminikhah, H. (2011). Analytical Approximation to the Solution of Nonlinear Blasius Viscous Flow Equation by LTNHPM. International Scholarly Research Network ISRN Mathematical Analysis. 2012: 10. DOI: https://doi.org/10.5402/2012/957473
Aminikhah, H. (2012). The combined Laplace transform and new homotopy perturbation method for stiff systems of ODEs. Applied Mathematical Modelling. 36(8): 3638-3644. DOI: https://doi.org/10.1016/j.apm.2011.10.014
Aminikhan, H. and Hemmatnezhad, M. (2012). A novel Effective Approach for Solving Nonlinear Heat Transfer Equations. Heat Transfer-Asian Research. 41(6): 459-466. DOI: https://doi.org/10.1002/htj.20411
Asma, M., Othman, W. A. M., Wong, B. R., and Biswas, A. (2018). Optical soliton perturbation with quadraticcubic nonlinearity by Adomian decomposition method. Optik. 164: 632-641. DOI: https://doi.org/10.1016/j.ijleo.2018.03.008
Ayati, Z. and Biazar, J. (2015). On the convergence of Homotopy perturbation method. Journal of the Egyptian Mathematical Society. 23(2): 424-428. DOI: https://doi.org/10.1016/j.joems.2014.06.015
Ayub, K., Khan, M. Y., and Mahmood-Ul-Hassan, Q. (2017). Solitary and periodic wave solutions of Calogero–Bogoyavlenskii–Schiff equation via exp-function methods. Computers & Mathematics with Applications. 74(12): 3231-3241. DOI: https://doi.org/10.1016/j.camwa.2017.08.021
Chow, T. L. (1995). Classical Mechanics. New York: John Wiley and Sons Inc. 560 Pp.
Filobello-Nino, U., Vazquez-Leal, H., Khan, Y., Yildirim, A., Jimenez-Fernandez, V. M., Herrera-May, A. L., …, and Cervantes-Perez, J. (2013a). Perturbation method and Laplace–Padé approximation to solve nonlinear problems”. Miskolc Mathematical Notes. 14(1): 89-101. DOI: https://doi.org/10.18514/MMN.2013.517
Filobello-Nino, U., Vazquez-Leal, H., Khan, Y., Perez-Sesma, A., Diaz-Sanchez, A., Jimenez-Fernandez, V. M., ..., and Sanchez-Orea, J. (2013b). Laplace transform-homotopy perturbation method as a powerful tool to solve nonlinear problems with boundary conditions defined on finite intervals. Computational and Applied Mathematics. 34(1): 1-16. DOI: https://doi.org/10.1007/s40314-013-0073-z
Filobello-Nino, U., Vazquez-Leal, H., Sarmiento-Reyes, A., Perez-Sesma, A., Hernandez-Martinez, L., Herrera-May, A., …, and Pereyra-Diaz, D., and Diaz-Sanchez, A. (2013c). The study of heat transfer phenomena using PM for approximate solution with dirichlet and mixed boundary conditions”. Applied and Computational Mathematics. 2(6): 143-148. DOI: https://doi.org/10.11648/j.acm.20130206.16
Filobello-Nino, U., Vazquez-Leal, H., Boubaker, K., Khan, Y., Perez-Sesma, A., Sarmiento-Reyes, A., …, and Pereyra-Castro, K. (2013d). Perturbation method as a powerful tool to solve highly nonlinear problems: The case of gelfand’s equation”. Asian Journal of Mathematics & Statistics. 6: 76-82. DOI: https://doi.org/10.3923/ajms.2013.76.82
Filobello-Nino, U., Vazquez-Leal, H., Perez-Sesma, A., Cervantes-Perez, J., Jimenez-Fernandez, V. M., Hernandez-Martinez, L., …, and Mendez-Perez, J. M. (2014). An easy computable approximate solution for a squeezing flow between two infinite plates by using of perturbation method”. Applied and Computational Mathematics. 3(1): 38-44. DOI: https://doi.org/10.11648/j.acm.20140301.16
He, J. H. (2006). Some asymptotic methods for strongly nonlinear equations. International Journal of Modern Physics B. 20(10): 1141-1199. DOI: https://doi.org/10.1142/S0217979206033796
Hendi, F. A. and Al-Qarni, M. M. (2017). The variational Adomian decomposition method for solving nonlinear two-dimensional Volterra-Fredholm integro-differential equation. Journal of King Saud University-Science. 1-4.
Holmes, M. H. (1995). Introduction to Perturbation Methods. New York: Springer-Verlag. 337 Pp. DOI: https://doi.org/10.1007/978-1-4612-5347-1
Khan, M., Gondal, M. A., Hussain, I., and Vanani, S. K. (2011). A new study between homotopy analysis method and homotopy perturbation transform method on a semi infinite domain. Mathematical and Computer Modelling. 55(3-4): 1143-1150. DOI: https://doi.org/10.1016/j.mcm.2011.09.038
Lee, M. K., Fouladi, M. H., and Namasivayam, S. N. (2017). Natural frequencies of thin rectangular plates using homotopy-perturbation method. Applied Mathematical Modelling. 50: 524-543. DOI: https://doi.org/10.1016/j.apm.2017.05.050
Liu, J. and Wang, B. (2018). Solving the backward heat conduction problem by homotopy analysis method. Applied Numerical Mathematics. 128: 84-97. DOI: https://doi.org/10.1016/j.apnum.2018.02.002
Marinca, V. and Herisanu, N. (2011). Nonlinear Dynamical Systems in Engineering. New York: Springer-Verlag Berlin Heidelberg. 395 Pp. DOI: https://doi.org/10.1007/978-3-642-22735-6
Melchionna, S. (2017). A variational approach to symmetry, monotonicity, and comparison for doubly-nonlinear equations. Journal of Mathematical Analysis and Applications. 456(2): 1303-1328. DOI: https://doi.org/10.1016/j.jmaa.2017.07.052
Mirzazadeh, M. and Ayati, Z. (2016). New homotopy perturbation method for system of Burgers equations. Alexandria Engineering Journal. 55(2): 1619-1624. DOI: https://doi.org/10.1016/j.aej.2016.02.003
Mohyud-Din, S. T., Sikander, W., Khan, U., and Ahmed, N. (2017). Optimal variational iteration method for nonlinear problems. Journal of the Association of Arab Universities for Basic and Applied Sciences. 24(1): 191-197. DOI: https://doi.org/10.1016/j.jaubas.2016.09.004
Ravi, L. K., Ray, S. S., and Sahoo, S. (2017). New exact solutions of coupled Boussinesq–Burgers equations by exp-function method. Journal of Ocean Engineering and Science. 2(1): 34-46. DOI: https://doi.org/10.1016/j.joes.2016.09.001
Spiegel, M. R. (1988). Teoría y Problemas de Transformadas de Laplace, primera edición. Serie de compendios Schaum. México: Libros McGraw-Hill. 261 Pp.
Zahran, E. H. and Khater, M. M. (2016). Modified extended tanh-function method and its applications to the Bogoyavlenskii equation. Applied Mathematical Modelling. 40(3): 1769-1775. DOI: https://doi.org/10.1016/j.apm.2015.08.018
Zhang, L. N. and Xu, L. (2007). Determination of the limit cycle by He’s parameter expansion for oscillators in a u3/1 + u2 potential. Zeitschrift für Naturforschung - Section A Journal of Physical Sciences. 62(7-8): 396-398. DOI: https://doi.org/10.1515/zna-2007-7-807
Zill, D. (2012). A First Course in Differential Equations with Modeling Applications, 10th Edition. Boston: Brooks/Cole Cengage Learning. 489 Pp.