Effect of Candida norvegensis on ruminal degradation of cornstover and on growth performance of lambs

Authors

  • Oscar Ruiz-Barrera Universidad Autónoma de Chihuahua, Facultad de Zootecnia y Ecología. Periférico Francisco R. Almada km 1, col. Zootecnia, Chihuahua, Chihuahua, México, C. P. 31453.
  • Jesús López-Morones Universidad Autónoma de Chihuahua, Facultad de Zootecnia y Ecología. Periférico Francisco R. Almada km 1, col. Zootecnia, Chihuahua, Chihuahua, México, C. P. 31453.
  • Jaime Salinas-Chavira Universidad Autónoma de Tamaulipas, Facultad de Medicina Veterinaria y Zootecnia, Ciudad Victoria, Tamaulipas, México.
  • Yamicela Castillo-Castillo Universidad Autónoma de Chihuahua, Facultad de Zootecnia y Ecología. Periférico Francisco R. Almada km 1, col. Zootecnia, Chihuahua, Chihuahua, México, C. P. 31453.

DOI:

https://doi.org/10.29059/cienciauat.v14i2.1267

Keywords:

yeast, ruminal degradability, lambs, probiotic

Abstract

Probiotics assist in the development of beneficial microorganisms in the rumen that increase digestibility of nutrients and improves the productive performance of ruminants; it also has the possibility of using ingredients as corn stover of relatively low nutritional value, but available in some places at low prices. Saccharomyces yeasts are conventionally used as probiotics and there are reports that use native strains such as Candida norvegensis. The objective of this study was to evaluate the effects of the probiotic of Candida norvegensis on the in situ ruminal dry matter degradability of corn stover and on the productive performance of growing lambs. In the first experiment, the yeast Candida norvegensis (strain Levazoot 15) [0 g (T1)] and 5 g (T2) was used to determine the in situ ruminal dry matter degradation (RDMD) of the corn stover in 3 cows with cannulas in the rumen, which was determined by the polyester bag technique. There was no effect of yeast (P > 0.05) on fraction (a), (b) and (a+b). However, the effective degradability at 1 %/h and 5 %/h of ruminal turnover was higher in T2 (P < 0.05). In the second experiment, 32 lambs were randomly assigned to individual pens for 105 d to evaluate 4 diets that differed in the proportion of concentrate: forage: T1 = 75: 25, T2 = 75:25; T3 = 50: 50, and T4 = 25: 75. With the exception of T1, the diets were supplemented with Candida norvegensis at 15 mL/kg of live weight, equivalent to 5 g/d of yeast in dry matter basis. The lambs in the diet with 75 % of concentrate plus the  yeast (T2) showed greater weight gain and best  feed conversion (P < 0.05). It is concluded that Candida norvegensis showed beneficial effects on ruminal degradability and on the growth of lambs. 

References

Abdel-Aziz, N. A., Salem, A. Z., El-Adawy, M. M., Camacho, L. M., Kholif, A. E., Elghandour, M. M., and Borhami, B. E. (2015). Biological treatments as a mean to improve feed utilization in agricultura animals, an overview. Journal of Integrative Agriculture. 14(3): 534-543. DOI: https://doi.org/10.1016/S2095-3119(14)60829-7

Ando, S., Nishiguchi, Y., Hayasaka, K., Iefuji, H., and Takahashi, J. (2006). Effects of Candida utilis treatment on the nutrient value of rice bran and the effect of Candida utilis on the degradation of forages in vitro. Asian-Australasian Journal of Animal Sciences. 19(6): 806-810. DOI: https://doi.org/10.5713/ajas.2006.806

AOAC, Association Official Analytical Chemists (2005). Official methods of analysis of AOAC International. (18a ed.) Maryland, E. U. A.: AOAC International. 486 Pp.

Bernard, J. K. (2015). Milk yield and composition of lactating dairy cows fed diets supplemented with a probiotic extract. The Professional Animal Scientist. 31(4): 354-358. DOI: https://doi.org/10.15232/pas.2015-01404

Bhatt, R. S., Sahoo, A., Karim, S. A., and Gadekar, Y. P. (2018). Effects of Saccharomyces cerevisiae and rumen bypass-fat supplementation on growth, nutrient utilisation, rumen fermentation and carcass traits of lambs. Animal Production Science. 58(3): 530-538. DOI: https://doi.org/10.1071/AN14950

Castillo-Castillo, Y., Ruiz-Barrera, O., Burrola-Barraza, M. E., Marrero-Rodriguez, Y., Salinas-Chavira, J., Angulo-Montoya, C., and Camarillo, J. (2016). Isolation and characterization of yeasts from fermented apple bagasse as additives for ruminant feeding. Brazilian Journal of Microbiology. 47(4): 889-895. DOI: https://doi.org/10.1016/j.bjm.2016.07.020

Chaucheyras-Durand, F., Ameilbonne, A., Bichat, A., Mosoni, P., Ossa, F., and Forano, E. (2015). Live yeasts enhance fibre degradation in the cow rumen through an increase in plant substrate colonisation by fibrolytic bacteria and fungi. Journal of Applied Microbiology. 120(3): 560-570. DOI: https://doi.org/10.1111/jam.13005

Dittmann, M. T., Hummel, J., Hammer, S., Arif, A., Hebel, C., Muller, D. W. H., and Clauss, M. (2015). Digesta kinetics in gazelles in comparison to other ruminants: Evidence for taxon-specific rumen fluid throughput to adjust digesta washing to the natural diet. Comparative Biochemistry and Physiology A-Molecular and Integrative Physiology. 185(1): 58-68. DOI: https://doi.org/10.1016/j.cbpa.2015.01.013

Gadekar, Y. P., Shinde, A. K., Sahoo, A., and Karim, S. A. (2015). Effect of probiotic supplementation on carcass traits and meat quality of Malpura lambs. The Indian Journal of Small Ruminants. 21(3): 306-310. DOI: https://doi.org/10.5958/0973-9718.2015.00045.8

Haddad, S. G. and Goussous, S. N. (2005). Effect of yeast culture supplementation on nutrient intake, digestibility and growth performance of Awassi lambs. Animal Feed Science and Technology. 118(3-4): 343-348. DOI: https://doi.org/10.1016/j.anifeedsci.2004.10.003

INEGI, Instituto Nacional de Estadística y Geografía (2016). Sistema para la Consulta del Anuario Estadístico del Estado de Chihuahua. [En línea]. Disponible en: http://cuentame.inegi.org.mx/monografias/informacion/chih/territorio/clima.aspx?tema=me&e=08. Fecha de consulta: 16 de abril de 2016.

Ishaq, S. L., Kim, C. J., Reis, D., and Wright, A. D. G. (2015). Fibrolytic bacteria isolated from the rumen of North American moose (Alces alces) and their use as a probiotic in neonatal lambs. Plos One. 10(12): 1-25. DOI: https://doi.org/10.1371/journal.pone.0144804

Issakowicz, J., Bueno, M. S., Sampaio, A. C. K., and Duarte, K. M. R. (2013). Effect of concentrate level and live yeast (Saccharomyces cerevisiae) supplementation on Texel lamb performance and carcass characteristics. Livestock Science. 155(1): 44-52. DOI: https://doi.org/10.1016/j.livsci.2013.04.001

Jia, P., Cui, K., Ma, T., Wan, F., Wang, W., Yang, D., ..., and Diao, Q. (2018). Influence of dietary supplementation with Bacillus licheniformis and Saccharomycescerevisiae as alternatives to monensin on growth performance, antioxidant, immunity, ruminal fermentation and microbial diversity of fattening lambs. Scientific Reports. 8(1): 16712. DOI: https://doi.org/10.1038/s41598-018-35081-4

Julien, C., Marden, J. P., Auclair, E., Moncoulon, R., Cauquil, L., Peyraud, J. L., and Bayourthe, C. (2015). Interaction between live yeast and dietary rumen degradable protein level: effects on diet utilization in early-lactating dairy cows. Agricultural Science. 6(1): 1-13. DOI: https://doi.org/10.4236/as.2015.61001

Kannan, S., Hernandez, L., Herrera, A., Jimenez, B., Miller, M., Perales, P., and Subburaj, P. (2014). Genesis of antibiotic resistance (AR) III: triflingrisk of AR pathogens induced infectious diseases from regulated concentrated animal feeding operations. The FASEB Journal. 28(1): 986-997. DOI: https://doi.org/10.1096/fasebj.28.1_supplement.986.3

Kowalik, B., Skomial, J., Miltko, R., and Majewska, M. (2016). The effect of live Saccharomyces cerevisiae yeast in the diet of rams on the digestibility of nutrients, nitrogen and mineral retention, and blood serum biochemical parameters. Turkish Journal of Veterinary & Animal Sciences. 40(5): 534-539. DOI: https://doi.org/10.3906/vet-1511-37

Krehbiel, C. R., Rust, S. R., Zhang, G., and Gilliland, S. E. (2003). Bacterial direct-fed microbials in ruminant diets: performance response and mode of action. Journal of Animal Science. 81(14 supl. 2): 120-132.

Leibtag, E. (2008). Corn prices near record high, but what about food costs, in Amber Waves. [En línea]. Disponible en: https://www.ers.usda.gov/amber-waves/2008/february/corn-prices-nearrecord-high-but-what-about-food-costs/. Fecha de consulta: 16 de septiembre de 2018.

Mahyuddin, P. and Winugroho, M. (2010). Effect of combination of yeast (Saccharomyces cerevisae + Candida utilis) and herbs supplementation in finishing diet on carcass characteristics of beef cattle. Journal Indonesian Tropical Animal Agriculture. 35(4): 251-256. DOI: https://doi.org/10.14710/jitaa.35.4.251-256

Marrero, Y., Castillo, Y., Ruiz, O., Burrola, E., and Angulo, C. (2014). Feeding of yeast (Candida spp) improves in vitro ruminal fermentation of fibrous substrates. Journal of Integrative Agriculture. 14(3): 514-519. DOI: https://doi.org/10.1016/S2095-3119(14)60830-3

McDonald, I. (1981). A revised model for estimation of protein degradability in the rumen. Journal of Agricultural Scienece. 96(1): 251-252. DOI: https://doi.org/10.1017/S0021859600032081

Mokhber-Dezfouli, M. R., Tajik, P., Bolourchi, M., and Mahmoudzadeh, H. (2007). Effects of probiotics supplementation in daily milk intake of newborn calves on body weight gain, body height, diarrhea occurrence and health condition. Pakistan Journal of Biological Sciences. 10(18): 3136-3140. DOI: https://doi.org/10.3923/pjbs.2007.3136.3140

Noziére, P. Y. and Michaelt-Doreau, B. (2000). In sacco methods. Farm animal metabolism and nutrition (tenth edition.). USA: CABI Publishing. 438 Pp.

NRC, National Research Council (2001). Nutrientrequeriments of domestic animals. National Academic Press. Washington, DC: Seventh edition. 363 Pp.

Obeidat, B. S. (2017). The effects of feeding olive cake and Saccharomyces cerevisiae supplementation on performance, nutrient digestibility and blood metabolites of Awassi lambs. Animal Feed Science and Technology. 231: 131-137. DOI: https://doi.org/10.1016/j.anifeedsci.2017.07.006

Obeidat, B. S., Mahmoud, K. Z., Obeidat, M. D., Ata, M., Kridli, R. T., Haddad, S. G., ..., and Hatamleh, S. M. (2018). The effects of Saccharomyces cerevisiae supplementation on intake, nutrient digestibility, and rumen fluid pH in Awassi female lambs. Veterinary World. 11(7): 1015-1020. DOI: https://doi.org/10.14202/vetworld.2018.1015-1020

Ørskov, E. R. and Mcdonald, I. (1979). Estimation of protein degradability in the rumen form incubation measurements weighted according to rate of passage. Journal of Agricultural Science. 92(2): 499-503. DOI: https://doi.org/10.1017/S0021859600063048

Promkot, C., Wanapat, M., and Mansathit, J. (2013). Effects of yeast fermented-cassava chipprotein (YEFECAP) on dietary intake and milk production of Holstein crossbred heifers and cowsduring pre-and post-partum period. Livestock Science. 154(1-3): 112-116. DOI: https://doi.org/10.1016/j.livsci.2013.02.022

Puniya, A. K., Singh, R., and Kamra, D. N. (2015). Rumen microbiology: From evolution to revolution (primera edición). USA: Springer. 379 Pp. DOI: https://doi.org/10.1007/978-81-322-2401-3

Qadis, A. Q., Goya, S., Ikuta, K., Yatsu, M., Kimura, A., Nakanishi, S., and Sato, S. (2014). Effects of a bacteria-based probiotic on ruminal pH, volatile fatty acids and bacterial flora of Holstein calves. Journal of Veterinary Medical Science. 76(6): 877-885. DOI: https://doi.org/10.1292/jvms.14-0028

Ruiz, O., Castillo, Y., Arzola, C., Burrola, E., Salinas, J., Corral, A., ..., and Itza, M. (2016). Effects of Candida norvegensis live cells on in vitro oat straw rumen fermentation. Asian-Australasian Journal of Animal Sciences. 29(2): 211-218. DOI: https://doi.org/10.5713/ajas.15.0166

Salinas-Chavira, J., Almaguer, L. J., Aguilera-Aceves, C. E., Zinn, R. A., Mellado, M., and Ruiz-Barrera, O. (2013). Effect of substitution of sorghum stover with sugarcane top silage on ruminal dry matter degradability of diets and growth performance of feedlot hair lambs. Small Ruminat Research. 112(1): 73-77. DOI: https://doi.org/10.1016/j.smallrumres.2012.10.002

SAS, Statistitical Analysis System (2007). User’s Guide: Statistics, Version 9.6th Edition. SAS Inst., Inc., Cary, NC.

Seo, J. K., Kim, S. W., Kim, M. H., Upadhaya, S. D., Kam, D. K., and Ha, J. K. (2010). Direct-fed microbials for ruminant animals. Asian-Australasian Journal of Animal Sciences. 23(12): 1657-1667. DOI: https://doi.org/10.5713/ajas.2010.r.08

Shankhpal, S., Parnerkar, S., and Bhanderi, B. M. (2016). The effect of feeding bypass fat and yeast (saccharomyces cerevisiae) supplemented total mixed ration on feed intake, digestibility, growth performance and feed conversion efficiency in weaner Surti kids. Livestock Research International. 4(1): 11-17. DOI: https://doi.org/10.5455/ijlr.20160906011911

Tamburello, L., Bulleri, F., Balata, D., and Benedetti-Cecchi, L. (2014). The role of overgrazing and anthropogenic disturbance in shaping spatial patterns of distribution of an invasive seaweed. Journal of Applied Ecology. 51(2): 406-414. DOI: https://doi.org/10.1111/1365-2664.12199

Tristant, D. and Moran, C. A. (2015). The efficacy of feeding a live probiotic yeast, Yea-Sacc®, on the performance of lactating dairy cows. Journal of Applied Animal Nutrition. 3(12): 90-95. DOI: https://doi.org/10.1017/jan.2015.10

Zeoula, L. M., Do-Prado, O. P. P., Geron, L. J. V., Beleze, J. R. F., Aguiar, S. C., and Maeda, E. M. (2014). Total digestibility and in situ degradability of bulky diets with the inclusion of ionophores or probiotics for cattle and buffaloes. Semina: Ciências Agrárias. 35(4): 2063-2076. DOI: https://doi.org/10.5433/1679-0359.2014v35n4p2063

Published

2020-01-31

How to Cite

Ruiz-Barrera, O., López-Morones, J., Salinas-Chavira, J., & Castillo-Castillo, Y. (2020). Effect of Candida norvegensis on ruminal degradation of cornstover and on growth performance of lambs. CienciaUAT, 14(2), 133–145. https://doi.org/10.29059/cienciauat.v14i2.1267

Issue

Section

Biotechnology and Agricultural Sciences

Most read articles by the same author(s)

Similar Articles

1 2 > >> 

You may also start an advanced similarity search for this article.