The ZnO nanostructures and their applications as a H2S gas sensor

Authors

  • Claudio Martínez-Pacheco Universidad Juárez Autónoma de Tabasco, División Académica de Ingeniería y Arquitectura, avenida Universidad s/n, Zona de la Cultura, colonia Magisterial, Villahermosa, Tabasco, México, C. P. 86040. https://orcid.org/0000-0002-5311-7398
  • Ebelia Del-Ángel-Meraz Universidad Juárez Autónoma de Tabasco, División Académica de Ingeniería y Arquitectura, avenida Universidad s/n, Zona de la Cultura, colonia Magisterial, Villahermosa, Tabasco, México, C. P. 86040. http://orcid.org/0000-0002-6567-4263
  • Laura Lorena Díaz-Flores Universidad Juárez Autónoma de Tabasco, División Académica de Ingeniería y Arquitectura, avenida Universidad s/n, Zona de la Cultura, colonia Magisterial, Villahermosa, Tabasco, México, C. P. 86040. https://orcid.org/0000-0002-0415-3093

DOI:

https://doi.org/10.29059/cienciauat.v17i2.1632

Keywords:

portable detectors, sensor, toxic gases, nanoparticles

Abstract

There is a global interest in the detection of toxic gases for the protection of the environment and human beings, using low-cost and easy-to-use sensors. Multiple studies have focused on the use of gas detectors based on metal oxides, such as zinc oxide (ZnO), which has specific electronic properties as a gas detector because it is an n-type semiconductor and it has a low production cost. The objective of this work was to analyze the use of ZnO nanostructures for the manufacturing of hydrogen sulfide (H2S) gas sensors, as well as the most common techniques for obtaining these structures. The characteristics of zinc oxide nanostructures (NE´s-ZnO) vary due to the effect of the obtaining method, generating different morphologies and sizes, which impacts gas detection performance (0.5 ppm up to 600 ppm) and in the temperature range that is required. Advances in the design of various NE’s-ZnO will have the possibility of generating sensors that can be used in portable detectors and operate at room temperature, which is a current challenge.

Author Biographies

Claudio Martínez-Pacheco, Universidad Juárez Autónoma de Tabasco, División Académica de Ingeniería y Arquitectura, avenida Universidad s/n, Zona de la Cultura, colonia Magisterial, Villahermosa, Tabasco, México, C. P. 86040.

Student of the Doctorate of Science in Engineering. Juarez Autonomous University of Tabasco. Academic Division of Engineering and Architecture. Avenida Universidad s/n Zona de la Cultura, Colonia Magisterial, CP 86690, Villahermosa Centro, Tabasco, Mexico. CVU: 946800

Ebelia Del-Ángel-Meraz, Universidad Juárez Autónoma de Tabasco, División Académica de Ingeniería y Arquitectura, avenida Universidad s/n, Zona de la Cultura, colonia Magisterial, Villahermosa, Tabasco, México, C. P. 86040.

Research Professor. Juarez Autonomous  University of Tabasco. Academic Division of Engineering and Architecture. Avenida Universidad s/n Zona de la Cultura, Colonia Magisterial, CP 86690, Villahermosa Centro, Tabasco, Mexico. CVU: 202225.

Laura Lorena Díaz-Flores, Universidad Juárez Autónoma de Tabasco, División Académica de Ingeniería y Arquitectura, avenida Universidad s/n, Zona de la Cultura, colonia Magisterial, Villahermosa, Tabasco, México, C. P. 86040.

Profesora Investigadora. Universidad Juárez Autónoma de Tabasco. División Académica de Ingeniería y Arquitectura. Avenida Universidad s/n Zona de la Cultura, Colonia Magisterial.

References

Abdallah, B., Kakhia, M., and Obaide, A. (2021). Morphological and Structural Studies of ZnO Nanotube Films Using Thermal Evaporation Technique. Plasmonics. 16(5): 1549-1556.

Akbari-Saatlu, M., Procek, M., Mattsson, C., Thungström, G., Törndahl, T., Li, B., ..., and Radamson, H. H. (2022). Nanometer-Thick ZnO/SnO2 Heterostructures Grown on Alumina for H2S Sensing. ACS Applied Nano Materials. 5(5): 6954-6963.

Akgul, G. and Akgul, F. A. (2022). Impact of cobalt doping on structural and magnetic properties of zinc oxide nanocomposites synthesized by mechanical ball-milling method. Colloids and Inter-face Science Communications. 48: 100611.

Al-Baroot, A., Alheshibri, M., Drmosh, Q. A., Akhtar, S., Kotb, E., and Elsayed, K. A. (2022). A novel approach for fabrication ZnO/CuO nanocomposite via laser ablation in liquid and its antibacterial activity: A novel approach for fabrication ZnO/CuO nanocomposite. Arabian Journal of Chemistry. 15(2): 103606.

Bhati, V. S., Hojamberdiev, M., and Kumar, M. (2020). Enhanced sensing performance of ZnO nanostructures-based gas sensors: A review. Energy Reports. 6: 46-62.

Chen, Y., Xu, P., Xu, T., Zheng, D., and Li, X. (2017). ZnO-nanowire size effect induced ultra-high sensing response to ppb-level H2S. Sensors and Actuators, B: Chemical. 240: 264-272.

Comini, E. and Zappa, D. (2019). One- and two-dimensional metal oxide nanostructures for chemical sensing. In R. Jaaniso and O. K. Tan (Eds.), Semiconductor Gas Sensors (pp. 161-184). United States: Woodhead Publishing.

Dadkhah, M. and Tulliani, J. M. (2022). Green Synthesis of Metal Oxides Semiconductors for Gas Sensing Applications. Sensors. 22: 4669.

Dey, A. (2018). Semiconductor metal oxide gas sensors: A review. Materials Science and Engineering: B. 229: 206-217.

Ding, P., Xu, D., Dong, N., Chen, Y., Xu, P., Zheng, D., and Li, X. (2020). A high-sensitivity H2S gas sensor based on optimized ZnO-ZnS nano-heterojunction sensing material. Chinese Chemical Letters. 31(8): 2050-2054.

Duoc, V. T., Le, D. T. T., Hoa, N. D., Van-Duy, N., Hung, C. M., Nguyen, H., and Van-Hieu, N. (2019). New Design of ZnO Nanorod-and Nanowire-Based NO2 Room-Temperature Sensors Prepared by Hydrothermal Method. Journal of Nanomaterials. 2019: 6821937.

Es-Haghi, A., Taghavizadeh-Yazdi, M. E., Sharifal-hoseini, M., Baghani, M., Yousefi, E., Rahdar, A., and Baino, F. (2021). Application of response surface methodology for optimizing the therapeutic activity of zno nanoparticles biosynthesized from aspergillus niger. Biomimetics. 6(2): 34.

Fan, C., Sun, F., Wang, X., Majidi, M., Huang, Z., Kumar, P., and Liu, B. (2020). Enhanced H2S gas sensing properties by the optimization of p-CuO/n-ZnO composite nanofibers. Journal of Materials Science. 55(18): 7702-7714.

Fazio, E., Spadaro, S., Corsaro, C., Neri, G., Leonardi, S. G., Neri, F., …, and Neri, G. (2021). Metal-oxide based nanomaterials: Synthesis, characterization and their applications in electrical and electrochemical sensors. Sensors. 21(7): 2494.

Galstyan, V., Poli, N., and Comini, E. (2019). Highly Sensitive and Selective H2S Chemical Sensor Based on ZnO Nanomaterial. Applied Sciences. 9(6): 1167.

García-Salinas, F., Vázquez-Durán, A., and Yáñez-Limón, J. M. (2021). Comparative study of Al-doped ZnO films deposited by sol–gel and by sputtering using a sintered target from ZnO nanoparticles synthesized by sol–gel. Boletin de La Sociedad Espanola de Ceramica y Vidrio. 317: 11.

Gorup, L. F., Amorin, L. H., Camargo, E. R., Sequinel, T., Cincotto, F. H., Biasotto, G., …, and La-Porta, F. de A. (2020). Methods for design and fabrication of nanosensors: the case of ZnO-based nanosensor. In B. Han, T. A. Nguyen, P. K. Singh, V. K. Tomer, and A. Farmani (Eds.), Nanosensors for Smart Cities (pp. 9-30). United Kingdom: Elsevier.

Hieu, N. M., Van-Lam, D., Hien, T. T., Chinh, N. D., Quang, N. D., Hung, N. M., …, and Kim, D. (2020). ZnTe-coated ZnO nanorods: Hydrogen sulfide nano-sensor purely controlled by pn junction. Materials and Design. 191: 108628.

Hsu, K. C., Fang, T. H., Hsiao, Y. J., and Li, Z. J. (2021). Rapid detection of low concentrations of H2S using CuO-doped ZnO nanofibers. Journal of Alloys and Compounds. 852: 157014.

Hung, C. M., Phuong, H. V., Van-Thinh, V., Hong, L. T., Thang, N. T., Hanh, N. H., …, and Hoa, N. D. (2021). Au doped ZnO/SnO2 composite nanofibers for enhanced H2S gas sensing performance. Sensors and Actuators, A: Physical. 317: 112454.

Izawa, K., Ulmer, H., Staerz, A., Weimar, U., and Barsan, N. (2018). Application of SMOX-based sensors. In N. Barsan and K. Schierbaum (Eds.), Gas Sensors Based on Conducting Metal Oxides: Basic Understanding, Technology and Applications (pp. 217-257). United Kingdom: Elsevier.

Jain, D., Bhojiya, A. A., Singh, H., Daima, H. K., Singh, M., Mohanty, S. R., ..., and Singh, A. (2020). Microbial Fabrication of Zinc Oxide Nanoparticles and Evaluation of Their Antimicrobial and Photocatalytic Properties. Frontiers in Chemistry. 8: 778.

Kamalianfar, A., Naseri, M. G., and Jahromi, S. P. (2019). Preparation and gas-sensing performances of Cr2O3-decorated ZnO nanostructures grown in a boundary layer of non-uniform thickness for low-working temperature H2S detection. Chemical Physics Letters. 732: 136648.

Kashif, M., Fiaz, M., and Athar, M. (2021). One-step hydrothermal synthesis of ZnO nanorods as efficient oxygen evolution reaction catalyst. Inorganic and Nano-Metal Chemistry. 52(1): 101-107.

Kaur, M., Kailasaganapathi, S., Ramgir, N., Datta, N., Kumar, S., Debnath, A. K., …, and Gupta, S. K. (2017). Gas dependent sensing mechanism in ZnO nanobelt sensor. Applied Surface Science. 394: 258-266.

Kaur, N., Singh, M., and Comini, E. (2020). 1-D Nanostructured Oxide Chemoresistive Sensors. Langmuir. 36(23): 6326-6344.

Kaya, S., Ozturk, O., and Arda, L. (2020). Roughness and bearing analysis of ZnO nanorods. Ceramics International. 46(10): 15183-15196.

Kolhe, P. S., Shinde, A. B., Kulkarni, S. G., Maiti, N., Koinkar, P. M., and Sonawane, K. M. (2018). Gas sensing performance of Al doped ZnO thin film for H2S detection. Journal of Alloys and Compounds. 748: 6-11.

Korotcenkov, G. (2020). Current trends in nanomaterials for metal oxide-based conductometric gas sensors: Advantages and limitations. part 1: 1D and 2D nanostructures. Nanomaterials. 10(7): 1392.

Król, A., Pomastowski, P., Rafińska, K., Railean-Plugaru, V., and Buszewski, B. (2017). Zinc oxide nanoparticles: Synthesis, antiseptic activity and toxicity mechanism. Advances in Colloid and Interface Science. 249: 37-52.

Kumar, S., Bhushan, P., and Bhattacharya, S. (2018). Fabrication of Nanostructures with Bottom-up Approach and Their Utility in Diagnostics, Therapeutics, and Others. In S. Bhattacharya, A. K. Agarwal, N. Chanda, A. Pandey, and A. K. Sen (Eds.), Environmental, Chemical and Medical Sensors (pp. 167-198). Singapore: Springer.

Li, D., Qin, L., Zhao, P., Zhang, Y., Liu, D., Liu, F., …, and Lu, G. (2018). Preparation and gas-sensing performances of ZnO/CuO rough nanotubular arrays for low-working temperature H2S detection. Sensors and Actuators, B: Chemical. 254: 834-841.

Li, Z., Li, H., Wu, Z., Wang, M., Luo, J., Torun, H., …, and Fu, Y. (2019). Advances in designs and mechanisms of semiconducting metal oxide nanostructures for high-precision gas sensors operated at room temperature. Materials Horizons. 6(3): 470-506.

Llobet, E., Brunet, J., Pauly, A., Ndiaye, A., and Varenne, C. (2017). Nanomaterials for the Selective Detection of Hydrogen Sulfide in Air. Sensors. 17(2): 391.

Mahajan, S. and Jagtap, S. (2021). Nanomaterials-Based Resistive Sensors for Detection of Environ-mentally Hazardous H2S Gas. Journal of Electronic Materials. 50(5): 2531-2555.

Mazitova, G. T., Kienskaya, K. I., Ivanova, D. A., Belova, I. A., Butorova, I. A., and Sardushkin, M. V. (2019). Synthesis and Properties of Zinc Oxide Nanoparticles: Advances and Prospects. Review Journal of Chemistry. 9(2): 127-152.

Mirzaei, A., Kim, S. S., and Kim, H. W. (2018). Resistance-based H2S gas sensors using metal oxide nanostructures: A review of recent advances. Journal of Hazardous Materials. 357: 314-331.

Mirzaei, A., Lee, J. H., Majhi, S. M., Weber, M., Bechelany, M., Kim, H. W., and Kim, S. S. (2019). Resistive gas sensors based on metal-oxide nanowires. Journal of Applied Physics. 126(24): 241102.

Motazedi, R., Rahaiee, S., and Zare, M. (2020). Efficient biogenesis of ZnO nanoparticles using extracellular extract of Saccharomyces cerevisiae: Evaluation of photocatalytic, cytotoxic and other biological activities. Bioorganic Chemistry. 101: 103998.

Nikolic, M. V., Milovanovic, V., Vasiljevic, Z. Z., and Stamenkovic, Z. (2020). Semiconductor gas sensors: Materials, technology, design, and application. Sensors. 20(22): 1-31.

Nunes, D., Pimentel, A., Santos, L., Barquinha, P., Pereira, L., Fortunato, E., and Martins, R. (2019a). Structural, optical, and electronic properties of metal oxide nanostructures. In G. Korotcenkov (Ed.), Metal Oxide Nanostructures (pp. 59-102). United Kingdom: Elsevier.

Nunes, D., Pimentel, A., Santos, L., Barquinha, P., Pereira, L., Fortunato, E., and Martins, R. (2019b). Synthesis, design, and morphology of metal oxide nanostructures. In G. Korotcenkov (Ed.), Metal Oxide Nanostructures (pp. 21-57). United Kingdom: Elsevier.

Nurfani, E., Kadja, G. T. M., Purbayanto, M. A. K., and Darma, Y. (2020). The role of substrate temperature on defects, electronic transitions, and dark current behavior of ZnO films fabricated by spray technique. Materials Chemistry and Physics. 239: 122065.

Patel, M., Mishra, S., Verma, R., and Shikha, D. (2022). Synthesis of ZnO and CuO nanoparticles via Sol gel method and its characterization by using various technique. Discover Materials. 2(1): 1.

Patil, Y., Pedhekar, R. B., Patil, S., and Raghuwanshi, F. C. (2020). Thick film gas sensors made from Mn doped zinc oxide nanorods for H2S gas. Materials Today: Proceedings. 28: 1865-1871.

Ponja, S. D., Sathasivam, S., Parkin, I. P., and Carmalt, C. J. (2020). Highly conductive and transparent gallium doped zinc oxide thin films via chemical vapor deposition. Scientific Reports. 10(1): 1-7.

Rezaie, M. N., Mohammadnejad, S., and Ahadzadeh, S. (2022). The impact of ZnO nanotube on the performance of hybrid inorganic/organic lightemitting diode as a single-mode ring-core UV waveguide. Surfaces and Interfaces. 28: 101666.

Shao, S., Chen, X., Chen, Y., Zhang, L., Kim, H. W., and Kim, S. S. (2020). ZnO Nanosheets Modified with Graphene Quantum Dots and SnO2 Quantum Nanoparticles for Room-Temperature H2S Sensing. ACS Applied Nano Materials. 3(6): 5220-5230.

Shewale, P. S. and Yun, K. S. (2020). Synthesis and characterization of Cu-doped ZnO/RGO nanocomposites for room-temperature H2S gas sensor. Journal of Alloys and Compounds. 837: 155527.

Skowronski, L., Ciesielski, A., Olszewska, A., Szczesny, R., Naparty, M., Trzcinski, M., and Bukaluk, A. (2020). Microstructure and optical properties of E-beam evaporated zinc oxide films-effects of decomposition and surface desorption. Materials. 13(16): 3510.

Soni, A., Mulchandani, K., and Mavani, K. R. (2020). Effects of substrates on the crystalline growth and UV photosensitivity of glancing angle deposited porous ZnO nanostructures. Sensors and Actuators, A: Physical. 313: 112140.

Sun, M., Yu, H., Dong, X., Xia, L., and Yang, Y. (2020). Sedum lineare flower-like ordered mesoporous In2O3/ZnO gas sensing materials with high sensitive response to H2S at room temperature prepared by self-assembled of 2D nanosheets. Journal of Alloys and Compounds. 844: 156170.

Taghizadeh, S. M., Lal, N., Ebrahiminezhad, A., Moeini, F., Seifan, M., Ghasemi, Y., and Berenjian, A. (2020). Green and Economic Fabrication of Zinc Oxide (ZnO) Nanorods as a Broadband UV Blocker and Antimicrobial Agent. Nanomaterials. 10(3): 530.

Tripathy, N. and Kim, D. H. (2018). Metal oxide modified ZnO nanomaterials for biosensor applications. Nano Convergence. 5(1): 1-10.

Viter, R. and Iatsunskyi, I. (2019). Metal Oxide Nanostructures in Sensing. In O. V. Zenkina (Ed.), Nanomaterials Design for Sensing Applications (pp. 41-91). Netherlands: Elsevier.

Wang, C., Wang, L. J., Zhang, L., Xi, R., Huang, H., Zhang, S. H., and Pan, G. B. (2019a). Electrodeposition of ZnO nanorods onto GaN towards enhanced H2S sensing. Journal of Alloys and Compounds. 790: 363-369.

Wang, M., Luo, Q., Hussain, S., Liu, G., Qiao, G., and Kim, E. J. (2019b). Sharply-precipitated spherical assembly of ZnO nanosheets for low temperature H2S gas sensing performances. Materials cience in SemiconductorProcessing. 100: 283-289.

Yamazoe, N. and Shimanoe, K. (2019). Fundamentals of semiconductor gas sensors. In R. Jaaniso and O. K. Tan (Eds.), Semiconductor Gas Sensors (pp. 3-38). United States: Woodhead Publishing.

Yang, J. H., Yuan, K. P., Zhu, L. Y., Hang, C. Z., Li, X. X., Tao, J. J., …, and Lu, H. L. (2020). Facile synthesis of a-Fe2O3/ZnO core-shell nanowires for enhanced H2S sensing. Sensors and Actuators, B: Chemical. 307: 127617.

Yu, Z., Gao, J., Xu, L., Liu, T., Liu, Y., Wang, X., ..., and Zhao, C. (2020). Fabrication of Lettuce-Like ZnO Gas Sensor with Enhanced H2S Gas Sensitivity. Crystals. 10(3): 145.

Zhang, D., Fan, X., Hao, X., and Dong, G. (2019). Facile Fabrication of Polyaniline Nanocapsule Modified Zinc Oxide Hexagonal Microdiscs for H2S Gas Sensing Applications. Industrial& Engineering Chemistry Research. 58(5): 1906-1913.

Zhu, L. and Zeng, W. (2017). Room-temperature gas sensing of ZnO-based gas sensor: A review. In Sensors and Actuators, A: Physical. 267: 242-261.

Published

2023-01-26

How to Cite

Martínez-Pacheco, C., Del-Ángel-Meraz, E., & Díaz-Flores, L. L. (2023). The ZnO nanostructures and their applications as a H2S gas sensor. CienciaUAT, 17(2), 24–36. https://doi.org/10.29059/cienciauat.v17i2.1632

Issue

Section

Physical, Mathematics and Earth Sciences

Similar Articles

<< < 1 2 3 4 > >> 

You may also start an advanced similarity search for this article.