Application of Savitzky-Golay and Fast Fourier Transform filters in the processing of derivative spectra obtained from asphaltene solutions Espectroscopía UV-Vis derivada para asfaltenos

Authors

  • Sergio Iván Padrón-Ortega Tecnológico Nacional de México, Instituto Tecnológico de Ciudad Madero, Centro de Investigación en Petroquímica, Prol. Bahía de Aldhair y Av. De las Bahías, Parque de la Pequeña y Mediana Industria, Altamira, Tamaulipas, México, C. P. 89600. https://orcid.org/0000-0001-6270-0545
  • Ernestina Elizabeth Banda-Cruz Tecnológico Nacional de México, Instituto Tecnológico de Ciudad Madero, Centro de Investigación en Petroquímica, Prol. Bahía de Aldhair y Av. De las Bahías, Parque de la Pequeña y Mediana Industria, Altamira, Tamaulipas, México, C. P. 89600. https://orcid.org/0000-0003-4828-2636
  • Nohra Violeta Gallardo-Rivas Tecnológico Nacional de México, Instituto Tecnológico de Ciudad Madero, Centro de Investigación en Petroquímica, Prol. Bahía de Aldhair y Av. De las Bahías, Parque de la Pequeña y Mediana Industria, Altamira, Tamaulipas, México, C. P. 89600.

DOI:

https://doi.org/10.29059/cienciauat.v18i2.1812

Keywords:

Asphaltenes, derivative spectroscopy, Savitsky-Golay, FFT filters

Abstract

Asphaltenes are ultra-complex mixtures that negatively impact oil refining, production and transportation. The interest in its study ranges from its characterization to define its molecular structure, to the understanding of its interfacial behavior. Asphaltenes present a great diversity of functional groups and different ty-pes of associations such as non-covalent ones, hydrogen bonds, coordination complexes and interactions between parallel aromatic nuclei. The objective of this work was to analyze the composition present in asphaltenes extracted from heavy and extra-heavy crude oils using derivative spectroscopy. Asphaltene solutions were prepared in the concentration range of 20 mg/L to 100 mg/L and analyzed with UV-Visspectroscopy. The selection of zero-order spectra for processing was made based on the sharpness present. The spectra were subsequently processed with OriginPro 8.5, to obtain first and second-order derived spectra. The processing of the zero order spectra was performed with the Savitsky-Golay and Fast Fourier transform (FFT) filters. The derived spectra obtained presented clear signals with the presence of little noise, which made possible the identification of aromatic functional groups, from 1 to 4 rings in the wavelength range of 200 nm to 450 nm. The use of filters improved the quality of the signals and allowed the identification of components and structures present in asphaltenes. The Savitsky-Golay filter increased the resolution of the spectra derived from asphaltenes extracted from heavy crude oils and the FFT filter increased the asphaltenes extracted from heavy crude oils. Morphological differences between asphaltenes extracted from heavy and extra-heavy crude oils were observed by SEM, which maybe related to the composition and aromatic structures present in asphaltenes.

References

Alshareef, A., Scherer, A., Tan, X., Azyat, K., Stryker, J., Tykwinski, R., and Gray, M. (2011). Formation of archipelago structures during thermal cracking implicates a chemical mechanism for the formation of petroleum asphaltenes. Energy & Fuels. 25(5): 2130-2136.

Alvarez, F. and Ruiz, Y. (2013). Island versus archipelago architecture for asphaltenes: Polycyclic aromatic hydrocarbon dimer theoretical studies. Energy & Fuels. 27(4): 1791-1808.

Banda, E., Gallardo, N., Martínez, R., Páramo, U., and Mendoza, A. (2020). Derivative UV-Vis spectroscopy of asphaltenes solutions for the determination of the composition. Petroleum Science and Technology. 38(8): 666-671.

Banda, E., Padrón, S., Gallardo, N., Rivera, J., Páramo, U., Díaz, N., and Mendoza, A. (2016). Crude oil UV spectroscopy and light scattering characterization. Petroleum Science and Technology. 34(8): 732-738.

Chen, G., Lin, J., Hu, W., Cheng, C., Gu, X., Du, W., ..., and Qu, C. (2018). Characteristics of a crude oil composition and its in situ waxing inhibition behavior. Fuel. 218: 213-217.

Czernuszewicz, R. S. (2000). Geochemistry of porphyrins: Biological, industrial and environmental aspects. Journal of Porphyrins and Phthalocyanines. 4(4): 426-431.

Davarpanah, L., Vahabzadeb, F., and Dermanaki, A. (2015). Structural study of asphaltenes from Iranian heavy crude oil. Oil Gas Science and Technology. 70(6): 1035-1049.

Dixon, J., Taniguchi, M., and Lindsey, J. (2005). PhotochemCAD 2: A refined program with accompanying spectral databases for photochemical calculations. Photochemistry and Photobiology. 81(1): 212-213.

Doukkali, A., Saoiabi, A., Zrineh, A., Hamad, M., Ferhat, M., Barbe, J. M., and Guilard, R. (2002). Separation and identification of petroporphyrins extracted from the oil shales of Tarfaya: geochemical study. Fuel. 81(4): 467-472.

Dubrovkin, J. (2020). Derivative Spectroscopy. (First edition). Reino Unido: Ed. Cambridge Scholars Publishing. 456 Pp.

Elmasry, M. S., Hassan, W. S., Merey, H. A., and Nour, I. M. (2021). Simple mathematical data processing method for the determination of sever overlapped spectra of linagliptin and empagliflozin in their pure forms and pharmaceutical formulation: Fourier self deconvulated method. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 254: 119609.

El-Sabagh, S. M. (1998). Occurrence and distribution of vanadyl porphyrins in Saudi Arabian crude oils. Fuel Processing Technology. 57(1): 65-78.

Elsonbaty, A., Serag, A., Abdulwahab, S., Hassan, W. S., and Eissa, M. S. (2020). Analysis of quinary therapy targeting multiple cardiovascular diseases using UV spectrophotometry and chemometric tools. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 238: 118415.

Evdokimov, I., Fesan, A., and Losev, A. (2017). Asphaltenes: Absorbers and scatterers at near-ultra.violetvisible-near-infrared wavelengths. Energy & Fuels. 31(4): 3878-3884.

Forte, E. and Taylor, S. E. (2015). Thermodynamic modelling of asphaltene precipitation and related phenomena. Advances in Colloid and Interface Science. 217: 1-12.

Granville, W. (2009). Derivación. En P. F. Smith y W. Raymond-Longley (Eds.), Cálculo diferencial e integral (pp. 25-32). México, DF.: Limusa.

Hassanzadeh, M. and Abdouss, M. (2022). A com-prehensive review on the significant tools of asphaltene investigation. Analysis and characterization techniques and computational methods. Journal of Petroleum Science and Engineering. 208: 109611.

Joonaki, E., Buckman, J., Burgass, R., and Tohidi, B. (2018). Exploration of the difference in molecular structure of n-C7 and CO2 induced asphaltenes. Industrial & Engineering Chemistry Research. 57(26): 8810-8818.

Kauppinen, J. and Partanen, J. (2001). Fourier Transforms in Spectroscopy. EUA: Ed. Wiley-VCH Verlag GmbH. 14 Pp.

Li, R., Huang, Q., Zhang, D., Zhu, X., Shan, J., and Wang, J. (2020). An aging theory-based mathematic model for estimating the wax content of wax deposits using the Fick’s second law. AIChE Journal. 66(4): e16892.

Li, X., Wang, L., Lu, H., Wang, N., Wang, B., and Huang, Z. (2021). Using a switchable water to im-prove sustainable extraction for oil sands by low-concentration surfactant solution. Journal of Cleaner Production. 292: 126045.

López, M. L. y López, P. L. (1993). Una introducción a la espectrometría de derivadas. Educación Química. 4(3): 160-170.

Menkiti, N. D., Isanbor, C., Ayejuyo, O., Doamekpor, L. K., and Twum, E. O. (2022). Time-dependent multivariate and spectroscopic characterization of oil residue in Niger Delta soil. RSC Advances. 12(20): 12258-12271.

Nunez-Mendez, K. S., Salas-Chia, L. M., Molina V, D., Munoz, S. F., Leon, P. A., and Leon, A. Y. (2021). Effect of the catalytic aquathermolysis process on the physicochemical properties of a Colombian crude oil. Energy & Fuels. 35(6): 5231-5240.

Owen, T. (2000). Fundamentos de la espectroscopía UV-visible moderna: conceptos básicos. Principios y aplicaciones de espectroscopia UV-visible. Berlin, Alemania: Agilet Technology. 2-28 Pp.

Payzant, J. D., Lown, E. M., and Strausz, O. P. (1991). Structural units of Athabasca asphaltene: The aromatics with a linear carbon framework. Energy & Fuels. 5(3): 445-453.

Ruiz, Y., Wu, X., and Mullins, O. (2007). Electronic absorption edge of crude oils and asphaltenes analyzed by molecular orbital calculations with optical spectroscopy. Energy & Fuels. 21(2): 944-952.

Sakthivel, S., Gardas, R. L., and Sangwai, J. S. (2016). Spectroscopic investigations to understand the enhanced dissolution of heavy crude oil in the presence of lactam, alkyl ammonium and hydroxyl ammonium based ionic liquids. Journal of Molecular Liquids. 221: 323-332.

Sarowha, S. L. S., Sharma, B. K., Sharma, C. D., and Bhagat, S. D. (1997). Characterization of petroleum heavy distillates using HPLC and spectroscopic methods. Energy & Fuels. 11(3): 566-569.

Strausz, O. P., Mojelsky, T. W., and Lown, E. M. (1992). The molecular structure of asphaltene: An unfolding story. Fuel. 71(12): 1355-1362.

Taheri-Shakib, J., Saadati, N., Esfandiarian, A., Ahmad-Hosseini, S., and Rajabi-Kochi, M. (2020). Characterizing the wax-asphaltene interaction and surface morphology using analytical spectroscopy and microscopy techniques. Journal of Molecular Liquids. 302: 112506.

Tambe, S., Jain, D., and Amin, P. (2021). Simultaneous determination of dorzolamide and timolol by first-order derivative UV spectroscopy in simulated biological fluid for in vitro drug release testing. Spectrochimica Acta Part A: Molecular and Bio-molecular Spectroscopy. 255: 119682.

Thomas, O. and Causse, J. (2017). From spectra to qualitative and quantitative results. In O. Thomas and C. Burgess (Eds.), UV-visible spectrophotometry of waters and wastewater (pp. 37-72). Amsterdam, PB: Elsevier.

Thomas, O. and Cerda, V. (2007). From spectra to qualitative and quantitative results. In O. Thomas and C. Burgess (Eds.), UV-Visible Spectrophotometry of Water and Wastewater (pp. 24-28). Amsterdam, PB: Elsevier.

Thomas, O. and Theraulaz, F. (2007). Aggregate organic constituents. In O. Thomas and C. Burgess (Eds.), UV-Visible Spectrophotometry of Water and Wastewater (pp. 89-114). Amsterdam, PB: Elsevier.

Tissot, B. and Welte, D. (1978). Classification of Crude Oils. In B. Tissot and D. Welte (Eds.), Petroleum formation and occurrence (pp. 370-377). New York, Springer-Verlag Berlin Heidelberg.

Trejo, F., Ancheyta, J., and Rana, M. S. (2009). Structural characterization of asphaltenes obtained from hydroprocessed crude oils by SEM and TEM. Energy & Fuels. 23(1): 429-439.

Valencia, D. (2023). Chemical bonding and aromaticity analyses of petroporphyrins with vanadium or nickel. Fuel. 333: 126344.

Xu, J. and Liu, H. (2015). The growth and development of asphaltene aggregates in toluene solution. Petroleum Science and Technology. 33(23-24): 1916-1922.

Xuan, D. T. and Hoang V. D. (2022). Application of Fourier transform-based algorithms to resolve spectral overlapping for UV spectrophotometric coassay of spiramycin and metronidazole in tablets. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 277: 121253.

Published

2024-01-25

How to Cite

Padrón-Ortega, S. I., Banda-Cruz, E. E., & Gallardo-Rivas, N. V. (2024). Application of Savitzky-Golay and Fast Fourier Transform filters in the processing of derivative spectra obtained from asphaltene solutions Espectroscopía UV-Vis derivada para asfaltenos. CienciaUAT, 18(2), 170–182. https://doi.org/10.29059/cienciauat.v18i2.1812

Issue

Section

Engineering