Mortality of Bactericera Cockerelli nymphs by active chemical ingredients enhanced with graphite nanoparticles
DOI:
https://doi.org/10.29059/cienciauat.v20i1.1979Keywords:
potentiation, nanoformulations, paratrioza, pesticides, synergyAbstract
Bactericera cockerelli is one of the most important pests in Mexico in solanaceous crops. Their control and management are typically achieved through chemical active ingredients. Currently, in agriculture, efforts are being made to improve the efficiency of insecticides achieving low environmental impact and high effectiveness. The objective of this research was to evaluate the mortality of B. cockerelli nymphs using in vitro bioassays with chemical active ingredients mixed with graphite nanoparticles. The bioassays were conducted under laboratory conditions, where the effect of three insecticides: imidacloprid, lambda cyalothrin, and dimethoate, alone and in combination with nanographite, against B. cockerelli nymphs was evaluated. The LC50 of the imidacloprid-nanographite, lambda cyalothrin-nanographite, and dimethoate-nanographite combinations were 1.96 mg/L, 13.85 mg/L, and 57.31 mg/L, respectively, achieving mortality rates above 90 % for all insecticides. The LC50 of the active ingredients alone were 103.07 mg/L, 285.52 mg/L, and 492.35 mg/L for the same insecticides. The graphite nanoparticles enhanced the lethal effect 52.34, 20.60, and 8.59 times more than the products alone. The combination of insecticides with graphite nanoparticles showed high effectiveness in mortality against B. cockerelli nymphs, compared to the products alone, and represents a promising control alternative by reducing application rates.
References
Batool, M., Hussain, D., Akrem, A., Najam-ul-Haq, M., Saeed, S., Zaka, S. M., Nawaz, M. S., Buck, F., & Saeed, Q. (2020). Graphene quantum dots as cysteine protease nanocarriers against stored grain insect pests. Scientific Reports, 10(1), 3444. https://doi.org/10.1038/s41598-020-60432-5. DOI: https://doi.org/10.1038/s41598-020-60432-5
Behbudi, G. (2020). Mini review of graphene oxide for medical detection and applications. Advances in Applied NanoBio-Technologies, 1(3), 63-66.
Butler, C. D. & Trumble, J. T. (2012). Identification and impact of natural enemies of Bactericera cockerelli (Hemiptera: Triozidae) in Southern California. Journal of Economic Entomology, 105(5), 1509-1519. https://doi.org/10.1603/EC12051. DOI: https://doi.org/10.1603/EC12051
Chen, Z., Zhao, J., Liu, Z., Bai, X., Li, W., Guan, Z., Zhou, M., & Zhu, H. (2022). Graphene-Delivered Insecticides against Cotton Bollworm. Nanomaterials, 12(16), 2731. https://doi.org/10.3390/nano1216273. DOI: https://doi.org/10.3390/nano12162731
Dziewięcka, M., Pawlyta, M., Majchrzycki, Ł., Balin, K., Barteczko, S., Czerkawska, M., & Augustyniak, M. (2021). The structure–properties–cytotoxicity interplay: A crucial pathway to determining graphene oxide biocompatibility. International Journal of Molecular Sciences, 22, 5401. https://doi.org/10.3390/ijms22105401. DOI: https://doi.org/10.3390/ijms22105401
EPPO, Organización Europea y Mediterránea de Protección de las Plantas (2014). Bactericera cockerelli PARZCO. [En línea]. Disponible en: http://www.eppo.int. Fecha de consulta: 10 de diciembre de 2024.
Henderson, C. F. & Tilton, E. W. (1955). Tests with acaricides against the brown wheat mite. Journal of Economic Entomology, 48(2), 157-161. DOI: https://doi.org/10.1093/jee/48.2.157
IRAC, Insecticide Resistance Action Committee (2024). Modes de action. [En línea]. Disponible en: https://irac-online.org/methods/psylla-spp-all-stages/. Fecha de consulta: 8 de enero de 2025.
Kumar, D. & Kalita, P. (2017). Reducing postharvest losses during storage of grain crops to strengthen food security in developing countries. Foods, 6(1), 8. https://doi.org/10.3390/foods6010008. DOI: https://doi.org/10.3390/foods6010008
Li, C., Hu, C., Zhi, J., Yue, W., & Li, H. (2022). Effects of nano-graphene oxide on the growth and reproductive dynamics of Spodoptera frugiperda based on an age-stage, two-sex life table. Insects, 13(10), 929. https://doi.org/10.3390/insects13100929. DOI: https://doi.org/10.3390/insects13100929
Liu, J., Luo, Y., Jiang, X., Sun, G., Song, S., Yang, M., & Shen, J. (2022). Enhanced and sustained pesticidal activity of a graphene-based pesticide delivery system against the diamondback moth Plutella xylostella. Pest Management Science, 78(12), 5358-5365. https://doi.org/10.1002/ps.7158. DOI: https://doi.org/10.1002/ps.7158
Liu, D. & Trumble, J. T. (2006). Ovipositional preferences, damage thresholds, and detection of the tomato–potato psyllid Bactericera cockerelli (Homoptera: Psyllidae) on selected tomato accessions. Bulletin of Entomological Research, 96(2), 197-204. https://doi.org/10.1079/BER2005416. DOI: https://doi.org/10.1079/BER2005416
Liu, X., Vinson, D., Abt, D., Hurt, R. H., & Rand, D. M. (2009). Differential toxicity of carbon nanomaterials in Drosophila: larval dietary uptake is benign, but adult exposure causes locomotor impairment and mortality. Environmental Science & Technology, 43(16), 6357-6363. DOI: https://doi.org/10.1021/es901079z
Lozano-Gutiérrez, J., Chávez-Brizuela, A., Lara-Herrera, A., España-Luna, M. P., Balleza-Cadengo, J. D. J. y Hernández-Muñoz, C. A. (2018). Poblaciones de Bactericera cockerelli Sulc. 1909 (HEMIPTERA: PSILLIDAE) en 50 cultivares de chile (Capsicum annum L.) en Morelos, Zacatecas, México, 5, 354-357. https://doi.org/10.48779/ba80-a717.
Mogul, M. G., Akin, H., Hasirci, N., Trantolo, D. J.,Gresser, J. D., & Wise, D. L. (1996). Controlled release of biologically active agents for purposes of agricultural crop management. Resources, Conservation and Recycling, 16(1-4), 289-320. https://doi.org/10.1016/0921-3449(95)00063-1. DOI: https://doi.org/10.1016/0921-3449(95)00063-1
Munyaneza, J. E. (2013). Bactericera cockerelli. [En línea]. Disponible en: https://www.ars.usda.gov/research/publications/publication/?seqNo115=289067. Fecha de consulta: 8 de diciembre de 2024.
Olaniyan, O., Rodríguez-Gasol, N., Cayla, N., Michaud, E., & Wratten, S. D. (2020). Bactericera cockerelli (Sulc), a potential threat to China's potato industry. Journal of Integrative Agriculture, 19(2), 338-349. https://doi.org/10.1016/S2095-3119(19)62754-1. DOI: https://doi.org/10.1016/S2095-3119(19)62754-1
Ramírez-Dávila, J. F., Porcayo-Camargo, E. y Sánchez-Pale, J. R. (2012). Análisis de la distribución espacial de Bactericera Cockerelli Sulc (HEMIPTERA: TRIOZIDAE) en Solanum Tuberosum L. En Donato Guerra México, 12(1), 12-24. https://hdl.handle.net/10893/4083. DOI: https://doi.org/10.1007/s13744-012-0019-y
Rivera-Martínez, R., Ramírez-Dávila, J. F., Martínez-Quiroz, M. y González-Huerta, A. (2020). Modelización espacial de ninfas de Bactericera cockerelli Sulc. en tomate de cáscara (Physalis ixocarpa Brot.) por medio de técnicas geoestadísticas. Biotecnia, 22(1), 142-152. https://doi.org/10.18633/biotecnia.v22i1.1162. DOI: https://doi.org/10.18633/biotecnia.v22i1.1162
Rodríguez, G. C. y Kharissova, O. V. (2008). Pro-piedades y aplicaciones del grafeno. Ingenierías, 11(38), 17-23.
SADER, Secretaría de Agricultura y Desarrollo Rural (2024). México, entre los principales productores de chile verde en el mundo: agricultura. [En línea]. Disponible en: https://www.gob.mx/agricultura. Fecha de consulta: 19 de noviembre de 2024.
SIAP, Servicio de Información Agroalimentaria y Pesquero (2024). Principales estados productores de chile verde en México: agricultura. [En línea]. Disponible en: siap.gob.mx/cierreagricola/. Fecha de consulta: 18 de noviembre de 2024.
Trujillo-García, J., Lozano-Gutiérrez, J., España-Luna, M. P., Lara-Herrera, A. y Balleza-Cadengo, J. J. (2018). Parasitismo de Bactericera cockerelli (Sulc) (Hemiptera: Psyllidae) en dos cultivares de chile guajillo en invernadero. Entomología Mexicana, 5, 160-163. https://doi.org/10.48779/xm0m-w095.
Tucuch-Haas, J. I., Silva-Aguayo, G., & Rodríguez-Maciel, J. C. (2020). Oviposition of Bactericera co-ckerelli (Sulc) (Hemiptera: Triozidae) on Capsicum chinense (Jacq) treated with spiromesifen or spirotetramat. Revista Fitotecnia Mexicana, 43(3), 317-323. https://doi.org/10.35196/rfm.2020.3.317. DOI: https://doi.org/10.35196/rfm.2020.3.317
Vega-Gutiérrez, M. T., Rodríguez-Maciel, J. C., Díaz-Gómez, O., Bujanos-Muñiz, R., Mota-Sánchez, D., Martínez-Carrillo, J. L. y Garzón-Tiznado, J. A. (2008). Susceptibilidad a insecticidas en dos poblaciones mexicanas del salerillo, Bactericera cockerelli (Sulc) (Hemiptera: Triozidae). Agrociencia, 42(4), 463-471. https://www.scielo.org.mx/pdf/agro/v42n4/v42n4a9.pdf.
Venugopal, N. V. S. & Sainadh, N. V. S. (2016). Novel polymeric nanoformulation of Mancozeb–An eco-friendly nanomaterial. International Journal of Nanoscience, 15(04), 1650016. https://doi.org/10.1142/S0219581X16500162. DOI: https://doi.org/10.1142/S0219581X16500162
Villegas-Rodríguez, F., Marín-Sánchez, J., Delgado-Sánchez, P., Torres-Castillo, J. A., & Alvarado-Gómez, O. G. (2014). Management of Bactericera cockerelli (Sulc) (Hemiptera: Triozidae) in green-houses with entomopathogenic fungi (Hypocreales). Southwestern Entomologist, 39(3), 613-624. https://doi.org/10.3958/059.039.0320. DOI: https://doi.org/10.3958/059.039.0320
Wang, X., Xu, J., Sun, T., & Ali, S. (2021). Synthesis of Cordyceps fumosorosea-biochar nanoparticles and their effects on growth and survival of Bemisia tabaci (Gennadius). Frontiers in Microiology, 12, 630220. https://doi.org/10.3389/fmicb.2021.630220. DOI: https://doi.org/10.3389/fmicb.2021.630220
Wang, X., Xie, H., Wang, Z., & He, K. (2019b). Graphene oxide as a pesticide delivery vector for enhancing acaricidal activity against spider mites. Colloids and Surfaces B: Biointerfaces, 173, 632-638. https://doi.org/10.1016/j.colsurfb.2018.10.010. DOI: https://doi.org/10.1016/j.colsurfb.2018.10.010
Wang, X., Xie, H., Wang, Z., He, K., & Jing, D. (2019a). Graphene oxide as a multifunctional synergist of insecticides against lepidopteran insect. Environmental Science: Nano, 6(1), 75-84. https://doi.org/10.1039/C8EN00902C DOI: https://doi.org/10.1039/C8EN00902C
Xiang, Y., Wang, M., Sun, X., Cai, D., & Wu, Z. (2014). Controlling pesticide loss through nanonetworks. ACS Sustentable Chemistry & Engineering, 2(4), 918-924. DOI: https://doi.org/10.1021/sc400513p
Published
How to Cite
Issue
Section
Categories
License
Copyright (c) 2025 Universidad Autónoma de Tamaulipas

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.